- #1
karush
Gold Member
MHB
- 3,269
- 5
$\displaystyle\lim_{{x}\to{0}}\left(\frac{\tan 4x}{6x}\right)=$
(A) $\dfrac{1}{3}$
(B) $\dfrac{2}{3}$
(C) 0
(D) $-\dfrac{2}{3}$
(E) DNE
solution
[sp]
direct substitution of 0 results in undeterminant so use LH'R
so then after taking d/dx of numerator and denominator and factor out constant we have
$\displaystyle\lim_{{x}\to{0}}\left(\frac{4\sec ^2\left(4x\right)}{6}\right)
=\dfrac{4}{6} \lim_{{x}\to{0}} \sec ^2(4x) $
take the limit then simplify then
$\dfrac{4}{6}\cdot 1=\dfrac{2}{3}\quad (B)$[/sp]
ok hopefully correct probable need some more itermeddiate steps
I added show/hide
(A) $\dfrac{1}{3}$
(B) $\dfrac{2}{3}$
(C) 0
(D) $-\dfrac{2}{3}$
(E) DNE
solution
[sp]
direct substitution of 0 results in undeterminant so use LH'R
so then after taking d/dx of numerator and denominator and factor out constant we have
$\displaystyle\lim_{{x}\to{0}}\left(\frac{4\sec ^2\left(4x\right)}{6}\right)
=\dfrac{4}{6} \lim_{{x}\to{0}} \sec ^2(4x) $
take the limit then simplify then
$\dfrac{4}{6}\cdot 1=\dfrac{2}{3}\quad (B)$[/sp]
ok hopefully correct probable need some more itermeddiate steps
I added show/hide
Last edited: