- #1
karush
Gold Member
MHB
- 3,269
- 5
2000
Find the general solution of the given differential equation
$\displaystyle
ty^\prime - 2y =\sin{t}, \quad t>0\\$
Divide thru by $t$
$\displaystyle y^\prime - \frac{2}{t}y =\frac{\sin{t}}{t}$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -
\frac{2}{t} \, dx =e^{2\ln{t}}=t^{-2}\\$
Multiply thru with $t^{-2}$
$t^{-2}y^\prime - 2 t y= t^{-2}\sin{t}\\$
Simplify:
$(t^{-2}y)'= t^{-2}\sin{t}\\$
Integrate:
$\displaystyle t^2y=\int t^{-2}\sin{t} dt =
2t\sin(t)-(t^2-2)\cos(t)+c_1\\$
Answer from textbook
$y=\color{red}
{(c-t\cos t + \sin t )/t^2} \quad
y \to 0 \textit{ as } t \to \infty$
ok somewhere I am not approaching the bk ans
Find the general solution of the given differential equation
$\displaystyle
ty^\prime - 2y =\sin{t}, \quad t>0\\$
Divide thru by $t$
$\displaystyle y^\prime - \frac{2}{t}y =\frac{\sin{t}}{t}$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -
\frac{2}{t} \, dx =e^{2\ln{t}}=t^{-2}\\$
Multiply thru with $t^{-2}$
$t^{-2}y^\prime - 2 t y= t^{-2}\sin{t}\\$
Simplify:
$(t^{-2}y)'= t^{-2}\sin{t}\\$
Integrate:
$\displaystyle t^2y=\int t^{-2}\sin{t} dt =
2t\sin(t)-(t^2-2)\cos(t)+c_1\\$
Answer from textbook
$y=\color{red}
{(c-t\cos t + \sin t )/t^2} \quad
y \to 0 \textit{ as } t \to \infty$
ok somewhere I am not approaching the bk ans
Last edited: