- #1
karush
Gold Member
MHB
- 3,269
- 5
Find the general solution of the given differential equation
$\displaystyle y^\prime -2ty =2te^{-t^2}\\$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -2t \, dt =e^{-t^2}$$%e^(-t^2)\\$
Multiply thru with $e^{-t^2}$
$(e^{-t^2})y^\prime -(e^{-t^2})2ty =(e^{-t^2})2te^{-t^2}\\$
Simplify:
$((e^{-t^2})y)'= 2te^{-2t^2}\\$
Integrate:
$\displaystyle e^{-t^2}y=\int 2te^{-2t^2} dt =-\frac{ e^{-2t^2}}{2}+c_1\\$
Divide by $e^{-t^2}$
$\displaystyle y=-\frac{e^{-t^2}}{2}+c_1 e^{t^2}\\$
Answer from $\textbf{W|A}$
$\displaystyle y=\color{red}{c_1 e^{t^2}-\frac{e^{-t^2}}{2}}$
ok got to be some typos in this
otherwise suggestions$$\tiny\textsf{Text Book: Elementary Differential Equations and Boundary Value Problems}$$
$\displaystyle y^\prime -2ty =2te^{-t^2}\\$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -2t \, dt =e^{-t^2}$$%e^(-t^2)\\$
Multiply thru with $e^{-t^2}$
$(e^{-t^2})y^\prime -(e^{-t^2})2ty =(e^{-t^2})2te^{-t^2}\\$
Simplify:
$((e^{-t^2})y)'= 2te^{-2t^2}\\$
Integrate:
$\displaystyle e^{-t^2}y=\int 2te^{-2t^2} dt =-\frac{ e^{-2t^2}}{2}+c_1\\$
Divide by $e^{-t^2}$
$\displaystyle y=-\frac{e^{-t^2}}{2}+c_1 e^{t^2}\\$
Answer from $\textbf{W|A}$
$\displaystyle y=\color{red}{c_1 e^{t^2}-\frac{e^{-t^2}}{2}}$
ok got to be some typos in this
otherwise suggestions$$\tiny\textsf{Text Book: Elementary Differential Equations and Boundary Value Problems}$$
Last edited: