MHB 2.1.7 DE y'e -2ty =2te^(-t^2)

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the general solution of the given differential equation
$\displaystyle y^\prime -2ty =2te^{-t^2}\\$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -2t \, dt =e^{-t^2}$$%e^(-t^2)\\$
Multiply thru with $e^{-t^2}$
$(e^{-t^2})y^\prime -(e^{-t^2})2ty =(e^{-t^2})2te^{-t^2}\\$
Simplify:
$((e^{-t^2})y)'= 2te^{-2t^2}\\$
Integrate:
$\displaystyle e^{-t^2}y=\int 2te^{-2t^2} dt =-\frac{ e^{-2t^2}}{2}+c_1\\$
Divide by $e^{-t^2}$
$\displaystyle y=-\frac{e^{-t^2}}{2}+c_1 e^{t^2}\\$
Answer from $\textbf{W|A}$
$\displaystyle y=\color{red}{c_1 e^{t^2}-\frac{e^{-t^2}}{2}}$

ok got to be some typos in this
otherwise suggestions:eek:$$\tiny\textsf{Text Book: Elementary Differential Equations and Boundary Value Problems}$$
 
Last edited:
Physics news on Phys.org
karush said:
Find the general solution of the given differential equation
$\displaystyle y^\prime -2ty =2te^{-t^2}\\$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -2t \, dt =e^{-t^2}$$%e^(-t^2)\\$
Multiply thru with $e^{-t^2}$
$(e^{-t^2})y^\prime -(e^{-t^2})2ty =(e^{-t^2})2te^{-t^2}\\$
Simplify:
$((e^{-t^2})y)'= 2te^{-2t^2}\\$
Integrate:
$\displaystyle e^{-t^2}y=\int 2te^{-2t^2} dt =-\frac{ e^{-2t^2}}{2}+c_1\\$
Divide by $e^{-t^2}$
$\displaystyle y=-\frac{e^{-t^2}}{2}+c_1 e^{t^2}\\$
Answer from $\textbf{W|A}$
$\displaystyle y=\color{red}{c_1 e^{t^2}-\frac{e^{-t^2}}{2}}$

ok got to be some typos in this
otherwise suggestions:eek:$$\tiny\textsf{Text Book: Elementary Differential Equations and Boundary Value Problems}$$

Where do you believe those two results are different?
 
order of terms
 
karush said:
order of terms

Which is nothing. Addition is commutative.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Replies
4
Views
2K
Replies
7
Views
3K
Replies
9
Views
5K
Replies
2
Views
1K
Replies
3
Views
2K
Replies
5
Views
2K
Back
Top