- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{2.1.{7}}$
$$\displaystyle y^\prime +y =\frac{1}{1+x^2}, \quad y(0)=0$$
$\textit{Find the solution of the given initial value problem.}$ \begin{align*}\displaystyle
u(x) &=e^x\\
(e^x y)'&=\frac{e^x}{1+x^2} \\
e^x y&=\int \frac{e^x}{1+x^2}\, dx\\
%\textit{book answer}
&=\color{red}
{\displaystyle e^{-x}\int_{0}^{x}\frac{e^t}{1+t^2} \, dt}
\end{align*}
need help with steps why does the answer have $t$ in it
also if y=0 wouldn't it be 1
$$\displaystyle y^\prime +y =\frac{1}{1+x^2}, \quad y(0)=0$$
$\textit{Find the solution of the given initial value problem.}$ \begin{align*}\displaystyle
u(x) &=e^x\\
(e^x y)'&=\frac{e^x}{1+x^2} \\
e^x y&=\int \frac{e^x}{1+x^2}\, dx\\
%\textit{book answer}
&=\color{red}
{\displaystyle e^{-x}\int_{0}^{x}\frac{e^t}{1+t^2} \, dt}
\end{align*}
need help with steps why does the answer have $t$ in it
also if y=0 wouldn't it be 1
Last edited: