- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{2.1.9}$
2000
Find the general solution of the given differential equation, and use it to determine how
solutions behave as $t\to\infty$.
$2y'+y=3t$
divide by 2
$y'+\frac{1}{2}y=\frac{3}{2}t$
find integrating factor,
$\displaystyle\exp\left(\int \frac{1}{2} dt\right)=e^{t/2}+c$
multiply thru
$e^{t/2}y'+e^{t/2}\frac{y}{2}
=\frac{3e^{t/2}}{2}t $ok something went
------------------------------------
book answer
$\color{red}\displaystyle y=ce^{-t/2}+3t-6 \\
\textit{y is asymptotic to } 3t-6 \textit{ as } t\to\infty $
2000
Find the general solution of the given differential equation, and use it to determine how
solutions behave as $t\to\infty$.
$2y'+y=3t$
divide by 2
$y'+\frac{1}{2}y=\frac{3}{2}t$
find integrating factor,
$\displaystyle\exp\left(\int \frac{1}{2} dt\right)=e^{t/2}+c$
multiply thru
$e^{t/2}y'+e^{t/2}\frac{y}{2}
=\frac{3e^{t/2}}{2}t $ok something went
------------------------------------
book answer
$\color{red}\displaystyle y=ce^{-t/2}+3t-6 \\
\textit{y is asymptotic to } 3t-6 \textit{ as } t\to\infty $
Last edited: