- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{find the general solution}$
$$xy'+2y=e^x$$
$\textsf{divide thru by x}$
$$y' +\frac{2}{x}y=\frac{e^x}{x}$$
$\textsf{Find u(x)}$
$$\displaystyle u(x)=\exp\int\frac{2}{x} \, dx=e^{\ln x^2}=x^2$$
$\textsf{so far anyway..}$
$$xy'+2y=e^x$$
$\textsf{divide thru by x}$
$$y' +\frac{2}{x}y=\frac{e^x}{x}$$
$\textsf{Find u(x)}$
$$\displaystyle u(x)=\exp\int\frac{2}{x} \, dx=e^{\ln x^2}=x^2$$
$\textsf{so far anyway..}$
Last edited: