- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{205.o6.03}$
$\textsf{A body on a coordinate line such that it has a position}\\$
$\textsf{$\displaystyle s=f(t)=\frac{16}{t^2}-\frac{4}{t}$
on the interval $\displaystyle 1\le t \le 4$
with $s$ in meters and $t$ in seconds }$
$\textsf{a. Find the body's displacement and average vellocity
for the given time interval.}\\$
\begin{align}
\displaystyle
s(4)-s(1)&=\int_{1}^{4}
\left(\frac{16}{t^2}-\frac{4}{t}\right) \,dt \\
&=\left[-4\ln\left({\left| t \right|}\right)-\frac{16}{t}\right]_1^4 \\
&\approx-9.545-(-16)\\
&\approx6.4548 m \textit{ to the right}
\end{align}
$\textsf{b. Find the body's speed and acceration at the endpoints of the interval.}\\$
$\textsf{c. When if ever, during the interval does the body change direction? }$
$\textsf{A body on a coordinate line such that it has a position}\\$
$\textsf{$\displaystyle s=f(t)=\frac{16}{t^2}-\frac{4}{t}$
on the interval $\displaystyle 1\le t \le 4$
with $s$ in meters and $t$ in seconds }$
$\textsf{a. Find the body's displacement and average vellocity
for the given time interval.}\\$
\begin{align}
\displaystyle
s(4)-s(1)&=\int_{1}^{4}
\left(\frac{16}{t^2}-\frac{4}{t}\right) \,dt \\
&=\left[-4\ln\left({\left| t \right|}\right)-\frac{16}{t}\right]_1^4 \\
&\approx-9.545-(-16)\\
&\approx6.4548 m \textit{ to the right}
\end{align}
$\textsf{b. Find the body's speed and acceration at the endpoints of the interval.}\\$
$\textsf{c. When if ever, during the interval does the body change direction? }$
Last edited: