- #1
karush
Gold Member
MHB
- 3,269
- 5
%\section{Newton's Method }
%\subsubsection{205.q4.2 }
%\footnote{Leeward Community College}method m ,
$\textsf{a. Use Newton's Method: }$0000
\begin{align}
\displaystyle
x_{n+1}&=x_n-\frac{f(x_n)}{f'(x_n)}
\end{align}
$\textsf{b. Use Newton's Method to solve: }$
\begin{align}
\displaystyle
f_{q4.2}(x)&=x^3-\sin\left({x}\right)-2
\end{align}
$\textsf{accurate to 3 decimal places.}$
\begin{array}
\displaystyle
x_0&=\frac{f(0)}{f'(0)}
\therefore\frac{x^3-\sin(x)-2}{3x^2 - \cos(x)}&=0 \\
x_1&=0- \frac{f(0)}{f'(0)} &=-2.00... \\
x_2&=2.00- \frac{f(2.00)}{f'(2.00)}&=-1.267...\\
x_3&=1.267- \frac{f(1.267)}{f'(1.267)}&=-0.586...\\
x_4&=0.586- \frac{f(0.586)}{f'(0.586)}&=7.739...\\
x_5&=7.739- \frac{f(7.739)}{f'(7.739)}&=5.174.. \\
x_6&=5.174- \frac{f(5.174)}{f'(5.174)}&=3.453... \\
x_7&=3.454- \frac{f(3.454)}{f'(3.454)}&=2.378... \\
x_8&=2.378- \frac{f(2.378)}{f'(2.378)}&=1.770... \\
x_9&=1.770- \frac{f(1.770)}{f'(1.770)}&=1.502... \\
x_{10}&=1.502- \frac{f(1.502)}{f'(1.502)}&=1.443... \\
x_{11}&=1443- \frac{f(1443)}{f'(1443)}&=1.440... \\
x_{12}&=1440- \frac{f(1440)}{f'(1440)}&=1.440...\\
x_1 &\approx x_{12}
\end{array}
%\subsubsection{205.q4.2 }
%\footnote{Leeward Community College}method m ,
$\textsf{a. Use Newton's Method: }$0000
\begin{align}
\displaystyle
x_{n+1}&=x_n-\frac{f(x_n)}{f'(x_n)}
\end{align}
$\textsf{b. Use Newton's Method to solve: }$
\begin{align}
\displaystyle
f_{q4.2}(x)&=x^3-\sin\left({x}\right)-2
\end{align}
$\textsf{accurate to 3 decimal places.}$
\begin{array}
\displaystyle
x_0&=\frac{f(0)}{f'(0)}
\therefore\frac{x^3-\sin(x)-2}{3x^2 - \cos(x)}&=0 \\
x_1&=0- \frac{f(0)}{f'(0)} &=-2.00... \\
x_2&=2.00- \frac{f(2.00)}{f'(2.00)}&=-1.267...\\
x_3&=1.267- \frac{f(1.267)}{f'(1.267)}&=-0.586...\\
x_4&=0.586- \frac{f(0.586)}{f'(0.586)}&=7.739...\\
x_5&=7.739- \frac{f(7.739)}{f'(7.739)}&=5.174.. \\
x_6&=5.174- \frac{f(5.174)}{f'(5.174)}&=3.453... \\
x_7&=3.454- \frac{f(3.454)}{f'(3.454)}&=2.378... \\
x_8&=2.378- \frac{f(2.378)}{f'(2.378)}&=1.770... \\
x_9&=1.770- \frac{f(1.770)}{f'(1.770)}&=1.502... \\
x_{10}&=1.502- \frac{f(1.502)}{f'(1.502)}&=1.443... \\
x_{11}&=1443- \frac{f(1443)}{f'(1443)}&=1.440... \\
x_{12}&=1440- \frac{f(1440)}{f'(1440)}&=1.440...\\
x_1 &\approx x_{12}
\end{array}
Last edited: