- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3+1-1}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{(x+2)^2-1}} \, dx \\
u&=(x+2) \therefore du=dx \\
I_{88}&=\int\frac{1}{u\sqrt{u^2+1}} du
\end{align*}
$\textit{so far ?}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3+1-1}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{(x+2)^2-1}} \, dx \\
u&=(x+2) \therefore du=dx \\
I_{88}&=\int\frac{1}{u\sqrt{u^2+1}} du
\end{align*}
$\textit{so far ?}$