- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{206.10.3.17}$
$\textsf{Evaluate the following geometric sum.}$
$$\displaystyle
S_n=\frac{1}{2}+ \frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots + \frac{1}{8192}$$
$\textsf{This becomes}$
$$\displaystyle
S_n=\sum_{n=1}^{\infty}\frac{1}{2^{2n-1}}=\frac{2}{3}$$
$\textsf{How is this morphed into the geometric formula?}$
$\textsf{Evaluate the following geometric sum.}$
$$\displaystyle
S_n=\frac{1}{2}+ \frac{1}{8}+\frac{1}{32}+\frac{1}{128}+\cdots + \frac{1}{8192}$$
$\textsf{This becomes}$
$$\displaystyle
S_n=\sum_{n=1}^{\infty}\frac{1}{2^{2n-1}}=\frac{2}{3}$$
$\textsf{How is this morphed into the geometric formula?}$