- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{206.11.1.12}$
$\textsf{a.Find the linear approximating polynomial for} \\$
$$\displaystyle f(x)=\cos{x}
\textsf{ centered at $\displaystyle a=\frac{\pi}{4}$.}
\text{approximate} \cos(0.28\pi)$$
$\textsf{ using}$
$$f(x)=f(a)+f'(a)(x-a)$$
$\textsf{b. Find the quadratic approximating polynomial}\\$.
$\textsf{Assume we plug into this formula
with $x=0.28\pi$ and $\displaystyle a=\frac{\pi}{4}$
with $f'(x)=-\sin\left({x}\right)$
and $f''(x)=-\cos\left({x}\right)$} \\$
$$\displaystyle f(x)\approx P_2(x)
=f(a)+f'(a)(x-a)+\frac{f''(a)}{2}(x-a)^2$$
$\textsf{c. Use the polynomials obtained in (a) and (b) to approximate the given quality}\\$
$\textsf{still confused abour this?}$
$\textsf{a.Find the linear approximating polynomial for} \\$
$$\displaystyle f(x)=\cos{x}
\textsf{ centered at $\displaystyle a=\frac{\pi}{4}$.}
\text{approximate} \cos(0.28\pi)$$
$\textsf{ using}$
$$f(x)=f(a)+f'(a)(x-a)$$
$\textsf{b. Find the quadratic approximating polynomial}\\$.
$\textsf{Assume we plug into this formula
with $x=0.28\pi$ and $\displaystyle a=\frac{\pi}{4}$
with $f'(x)=-\sin\left({x}\right)$
and $f''(x)=-\cos\left({x}\right)$} \\$
$$\displaystyle f(x)\approx P_2(x)
=f(a)+f'(a)(x-a)+\frac{f''(a)}{2}(x-a)^2$$
$\textsf{c. Use the polynomials obtained in (a) and (b) to approximate the given quality}\\$
$\textsf{still confused abour this?}$
Last edited: