MHB 206.11.1.12 quadratic approximating polynomial

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.11.1.12}$
$\textsf{a.Find the linear approximating polynomial for} \\$
$$\displaystyle f(x)=\cos{x}
\textsf{ centered at $\displaystyle a=\frac{\pi}{4}$.}
\text{approximate} \cos(0.28\pi)$$
$\textsf{ using}$
$$f(x)=f(a)+f'(a)(x-a)$$
$\textsf{b. Find the quadratic approximating polynomial}\\$.
$\textsf{Assume we plug into this formula
with $x=0.28\pi$ and $\displaystyle a=\frac{\pi}{4}$
with $f'(x)=-\sin\left({x}\right)$
and $f''(x)=-\cos\left({x}\right)$} \\$
$$\displaystyle f(x)\approx P_2(x)
=f(a)+f'(a)(x-a)+\frac{f''(a)}{2}(x-a)^2$$
$\textsf{c. Use the polynomials obtained in (a) and (b) to approximate the given quality}\\$

$\textsf{still confused abour this?}$
☕
 
Last edited:
Physics news on Phys.org
Exactly what is your difficulty? You are told exactly what to do!
karush said:
$\tiny{206.11.1.12}$
$\textsf{a.Find the linear approximating polynomial for} \\$
$$\displaystyle f(x)=\cos{x}
\textsf{ centered at $\displaystyle a=\frac{\pi}{4}$.}
\text{approximate} \cos(0.28\pi)$$
$\textsf{ using}$
$$f(x)=f(a)+f'(a)(x-a)$$
Okay, f(x)= cos(x) and f'= -sin(x). At x= $\pi/4$ $cos(\pi/4)= sin(\pi/4)= \frac{\sqrt{2}}{2}$.

So $cos(x)= -\frac{\sqrt{2}}{2}(x-\pi/4)+ \frac{\sqrt{2}}{2}$.

$\textsf{b. Find the quadratic approximating polynomial}\\$.
$\textsf{Assume we plug into this formula
with $x=0.28\pi$ and $\displaystyle a=\frac{\pi}{4}$
with $f'(x)=-\sin\left({x}\right)$
and $f''(x)=-\cos\left({x}\right)$} \\$
$$\displaystyle f(x)\approx P_2(x)
=f(a)+f'(a)(x-a)+\frac{f''(a)}{2}(x-a)^2$$
$\textsf{tc. Use the polynomials obtained in (a) and (b) to approximate the given quality}\\$

$\textsf{still confused abour this?}$
☕
cosine and sine of "$0.28\pi$" do not give any thing simple ($sin(0.28\pi)$ is approximately 0.7705 and $cos(0.28\pi)$ is approximately 0.6374) so just enter $sin(0.28\pi)$ and $cos(0.28\pi)$:

$f(a)= cos(0.28\pi)$, $f'(a)=-sin(a)= -sin(0.28\pi)$, and $f''(a)= -cos(a)= -cos(0.28\pi)$ so we have
$cos(x)= cos(0.28\pi)- sin(0.28\pi)(x- 0.28\pi)- \frac{cos(0.28\pi)}{2}(x- 0.28\pi)^2$

For (c), what is the "given quality"? (Did you mean "equality" or "inequality"?)
 
ok added image
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top