- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{a. Find the first four nozero terms of the Maciaurin series for the given function} \\$
\begin{align}
a&=0 \\
f(x)&=(-5+x^2)^{-1} \\
\\
f^0(x)&=(-5+x^2)^{-1}\therefore f^0(a) = 1 \\
f^1(x)&=\frac{-2x}{(x^2-5)^2} \therefore f^1(a) = 0 \\
f^2(x)&=\frac{2(3x^3+5)}{(x^2-5)^3} \therefore f^2(a) = \frac{-2}{25} \\
f^3(x)&=\frac{-24x(x^2+5))}{(x^2-5)^4} \therefore f^3(a) = 0 \\
f^4(x)&=\frac{120x(x^4+10x^2+5))}{(x^2-5)^5} \therefore f^4(a) = \frac{-24}{125} \\
f^5(x)&=\frac{240x(x^4+10x^2+5))}{(x^2-5)^6} \therefore f^5(a) = 0 \\
f^6(x)&=\frac{720x(7x^6+175x^4+525x^2+125))}{(x^2-5)^7} \therefore f^6(a) = \frac{-144}{125}\\
\end{align}
$\textsf{so}$
\begin{align}
f(x)&=1+\frac{-x^2}{25}-\frac{-x^4}{125}-\frac{x^6}{625}
\end{align}
$\textsf{b. write the power series using $\sigma$ notation.} \\$
\begin{align}
\displaystyle
f(x)&=\frac{1}{1-x}=\sum_{k=0}^{\infty}x^k, \textsf{ for } |x|<1 \\
&=\sum_{k=0}^{\infty}
\end{align}
$\textsf{c.Determine the interval of convergence of the series.} \\$
\begin{align}
IOC&=\left[a,b\right]
\end{align}
$\textit{not even sure if I did a. correctly.. tons of calculation which I did most on TI}\\$
$\textit{b. and c. will try if a. looks ok did a few before on other problems.}\\$
$\textit{On a. I just skipped the the ones that =0 thanks for know it is a headache!}$
\begin{align}
a&=0 \\
f(x)&=(-5+x^2)^{-1} \\
\\
f^0(x)&=(-5+x^2)^{-1}\therefore f^0(a) = 1 \\
f^1(x)&=\frac{-2x}{(x^2-5)^2} \therefore f^1(a) = 0 \\
f^2(x)&=\frac{2(3x^3+5)}{(x^2-5)^3} \therefore f^2(a) = \frac{-2}{25} \\
f^3(x)&=\frac{-24x(x^2+5))}{(x^2-5)^4} \therefore f^3(a) = 0 \\
f^4(x)&=\frac{120x(x^4+10x^2+5))}{(x^2-5)^5} \therefore f^4(a) = \frac{-24}{125} \\
f^5(x)&=\frac{240x(x^4+10x^2+5))}{(x^2-5)^6} \therefore f^5(a) = 0 \\
f^6(x)&=\frac{720x(7x^6+175x^4+525x^2+125))}{(x^2-5)^7} \therefore f^6(a) = \frac{-144}{125}\\
\end{align}
$\textsf{so}$
\begin{align}
f(x)&=1+\frac{-x^2}{25}-\frac{-x^4}{125}-\frac{x^6}{625}
\end{align}
$\textsf{b. write the power series using $\sigma$ notation.} \\$
\begin{align}
\displaystyle
f(x)&=\frac{1}{1-x}=\sum_{k=0}^{\infty}x^k, \textsf{ for } |x|<1 \\
&=\sum_{k=0}^{\infty}
\end{align}
$\textsf{c.Determine the interval of convergence of the series.} \\$
\begin{align}
IOC&=\left[a,b\right]
\end{align}
$\textit{not even sure if I did a. correctly.. tons of calculation which I did most on TI}\\$
$\textit{b. and c. will try if a. looks ok did a few before on other problems.}\\$
$\textit{On a. I just skipped the the ones that =0 thanks for know it is a headache!}$
Last edited: