- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{a. Find the first four nozero terms of the Maciaurin series for the given function} \\$
\begin{align}
f^0(x)&=\ln{ (6 x + 1)} &\therefore f^0(a)&=0\\
f^1(x)&=\frac{6}{(6 x + 1)} &\therefore f^1(a)&=6\\
f^2(x)&= \frac{-36}{(6 x + 1)^2} &\therefore f^2(a)&=-36\\
f^3(x)&= \frac{432}{(6 x + 1)^3} &\therefore f^3(a)&=432\\
f^4(x)&= \frac{-7776}{(6 x + 1)^4} &\therefore f^3(a)&=-7776\\
\end{align}
\begin{align}
&=\frac{0}{0!}(x-a)^0 +\frac{6}{1!}(x-a)^1+
\frac{-36}{2!}(x-a)^2+\frac{432}{3!}(x-a)^3
+\frac{-7776}{4!}(x-a)^4\\
\ln{ (6 x + 1)}&\approx 6x-18x^{2}+72x^{3}-324x^{4}
\end{align}
$\textsf{b. write the power series using $\sigma$ notation.} \\$
\begin{align}
\displaystyle
f(x)&=\frac{1}{1-x}=\sum_{k=0}^{\infty}x^k, \textsf{ for } |x|<1 \\
&=\sum_{k=0}^{\infty}(6x)^{(k+1)}
\end{align}
$\textsf{c.Determine the interval of convergence of the series.} \\$
\begin{align}
IOC&=\left[-\frac{1}{6},\frac{1}{6}\right]
\end{align}
$\textit{not sure about this too many steps !}$
\begin{align}
f^0(x)&=\ln{ (6 x + 1)} &\therefore f^0(a)&=0\\
f^1(x)&=\frac{6}{(6 x + 1)} &\therefore f^1(a)&=6\\
f^2(x)&= \frac{-36}{(6 x + 1)^2} &\therefore f^2(a)&=-36\\
f^3(x)&= \frac{432}{(6 x + 1)^3} &\therefore f^3(a)&=432\\
f^4(x)&= \frac{-7776}{(6 x + 1)^4} &\therefore f^3(a)&=-7776\\
\end{align}
\begin{align}
&=\frac{0}{0!}(x-a)^0 +\frac{6}{1!}(x-a)^1+
\frac{-36}{2!}(x-a)^2+\frac{432}{3!}(x-a)^3
+\frac{-7776}{4!}(x-a)^4\\
\ln{ (6 x + 1)}&\approx 6x-18x^{2}+72x^{3}-324x^{4}
\end{align}
$\textsf{b. write the power series using $\sigma$ notation.} \\$
\begin{align}
\displaystyle
f(x)&=\frac{1}{1-x}=\sum_{k=0}^{\infty}x^k, \textsf{ for } |x|<1 \\
&=\sum_{k=0}^{\infty}(6x)^{(k+1)}
\end{align}
$\textsf{c.Determine the interval of convergence of the series.} \\$
\begin{align}
IOC&=\left[-\frac{1}{6},\frac{1}{6}\right]
\end{align}
$\textit{not sure about this too many steps !}$