- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{a. Find the first four nonzero terms
of the Taylor series $a=1$}$
\begin{align}
\displaystyle
f^0(x)&=6^{x} &\therefore \ \ f^0(a)&= 6 \\
f^1(x)&=6^{x}\ln(6) &\therefore \ \ f^1(a)&= 6\ln(6) \\
f^2(x)&={6^{x}\ln(6)^2} &\therefore \ \ f^2(a)&= {12\ln(6)} \\
f^3(x)&={6^{x}\ln(6)^3} &\therefore \ \ f^3(a)&= {18\ln(6)} \\
\end{align}
$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&\approx\frac{6}{0!}(x-1)^{0}
+\frac{6ln(6)}{1!}(x-1)^{1}
+\frac{12\ln(6)}{2!}(x-1)^{2}
+\frac{18\ln(6)}{3!}(x-1)^{3} \\
f\left(x\right)&\approx
6+6ln(6)(x-1)+6\ln(6)(x-1)^{2}+3\ln(6)(x-1)^{3}
\end{align}
$\textit{suggestions?}$
of the Taylor series $a=1$}$
\begin{align}
\displaystyle
f^0(x)&=6^{x} &\therefore \ \ f^0(a)&= 6 \\
f^1(x)&=6^{x}\ln(6) &\therefore \ \ f^1(a)&= 6\ln(6) \\
f^2(x)&={6^{x}\ln(6)^2} &\therefore \ \ f^2(a)&= {12\ln(6)} \\
f^3(x)&={6^{x}\ln(6)^3} &\therefore \ \ f^3(a)&= {18\ln(6)} \\
\end{align}
$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&\approx\frac{6}{0!}(x-1)^{0}
+\frac{6ln(6)}{1!}(x-1)^{1}
+\frac{12\ln(6)}{2!}(x-1)^{2}
+\frac{18\ln(6)}{3!}(x-1)^{3} \\
f\left(x\right)&\approx
6+6ln(6)(x-1)+6\ln(6)(x-1)^{2}+3\ln(6)(x-1)^{3}
\end{align}
$\textit{suggestions?}$