- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{206.11.3.39}$
$\textsf{a. Find the first four nonzero terms
of the Taylor series $a=0$}$
\begin{align}
\displaystyle
f^0(x)&=(1+x)^{-2} &\therefore \ \ f^0(a)&= 1 \\
f^1(x)&=\frac{-2}{(x+1)^3} &\therefore \ \ f^1(a)&= -2 \\
f^2(x)&=\frac{6}{(x+1)^4} &\therefore \ \ f^2(a)&= 6 \\
f^3(x)&=\frac{-24}{(x+1)^5} &\therefore \ \ f^3(a)&= -24 \\
\end{align}
$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&\approx\frac{1}{0!}x^{0}
+\frac{-2}{1!}x^{1}+\frac{6}{2!}x^{2}+\frac{-24}{3!}x^{3} \\
f\left(x\right)&\approx 1-2x+3x^{2}-4x^{3}
\end{align}
$\textsf{b. approximate $\frac{1 }{1,14^{-2}}$ }\\$
$\textsf{not sure where this is plugged in??}$
$\textsf{a. Find the first four nonzero terms
of the Taylor series $a=0$}$
\begin{align}
\displaystyle
f^0(x)&=(1+x)^{-2} &\therefore \ \ f^0(a)&= 1 \\
f^1(x)&=\frac{-2}{(x+1)^3} &\therefore \ \ f^1(a)&= -2 \\
f^2(x)&=\frac{6}{(x+1)^4} &\therefore \ \ f^2(a)&= 6 \\
f^3(x)&=\frac{-24}{(x+1)^5} &\therefore \ \ f^3(a)&= -24 \\
\end{align}
$\textsf{so then}$
\begin{align}
\displaystyle
f\left(x\right)&\approx\frac{1}{0!}x^{0}
+\frac{-2}{1!}x^{1}+\frac{6}{2!}x^{2}+\frac{-24}{3!}x^{3} \\
f\left(x\right)&\approx 1-2x+3x^{2}-4x^{3}
\end{align}
$\textsf{b. approximate $\frac{1 }{1,14^{-2}}$ }\\$
$\textsf{not sure where this is plugged in??}$
Last edited: