- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textbf{206.5.64 integral by partial fractions} \\
\displaystyle
I_{64}=
\int\frac{9x^3-6x+4}{x^3-x^2} \, dx \\
\text{expand} \\
\displaystyle
\frac{9x^3-6x+4}{x^3-x^2}
= \frac{9(x^3-x^2)+9x^2+6x+4}{x^3-x^2}
= 9 + \frac{9x^2+6x+4}{x^2(x-1)} \\
\textbf{stuck!}$
\displaystyle
I_{64}=
\int\frac{9x^3-6x+4}{x^3-x^2} \, dx \\
\text{expand} \\
\displaystyle
\frac{9x^3-6x+4}{x^3-x^2}
= \frac{9(x^3-x^2)+9x^2+6x+4}{x^3-x^2}
= 9 + \frac{9x^2+6x+4}{x^2(x-1)} \\
\textbf{stuck!}$