- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{206.8.5.49}$
$\textsf{Express the integrand as sum of partial fractions}$
\begin{align}
&& I_{49}&=\int\frac{30s+30}{(s^2+1)(s-1)^3}\, ds& &(1)& \\
&\textsf{expand}& \\
&& &=\displaystyle
15\int\frac{1}{(s^2+1)}\, ds
-15\int\frac{1}{(s-1)^2}\, ds
+30\int\frac{1}{(s-1)^3}\, ds& &(2)& \\
&\textsf{integrate}&\\
&& &=\displaystyle 15\arctan\left(s\right)
-\frac{-15}{s-1} +\frac{15}{(s-1)^2}& &(3)&\\
&\textsf{simplify}&\\
&& I_{49}&=\displaystyle15\arctan\left(s\right)
+\dfrac{15s-30}{\left(s-1\right)^2}+C& &(4)& \\
\end{align}
$\textsf{the demonator could have expanded to a polynomial?
also some answers had ln in the final answer}$
$\textsf{Express the integrand as sum of partial fractions}$
\begin{align}
&& I_{49}&=\int\frac{30s+30}{(s^2+1)(s-1)^3}\, ds& &(1)& \\
&\textsf{expand}& \\
&& &=\displaystyle
15\int\frac{1}{(s^2+1)}\, ds
-15\int\frac{1}{(s-1)^2}\, ds
+30\int\frac{1}{(s-1)^3}\, ds& &(2)& \\
&\textsf{integrate}&\\
&& &=\displaystyle 15\arctan\left(s\right)
-\frac{-15}{s-1} +\frac{15}{(s-1)^2}& &(3)&\\
&\textsf{simplify}&\\
&& I_{49}&=\displaystyle15\arctan\left(s\right)
+\dfrac{15s-30}{\left(s-1\right)^2}+C& &(4)& \\
\end{align}
$\textsf{the demonator could have expanded to a polynomial?
also some answers had ln in the final answer}$