- #1
karush
Gold Member
MHB
- 3,269
- 5
Let $f(x)=(2x+1)^3$ and let g be the inverse of $f$. Given that $f(0)=1$, what is the value of $g'(1)?$$(A)\, \dfrac{2}{27} \quad
(B)\, \dfrac{1}{54} \quad
(C)\, \dfrac{1}{27} \quad
(D)\, \dfrac{1}{6} \quad
(E)\, 6$ok not sure what the best steps on this would be but assume we first find $f^{-1}(x)$so rewrite at
$y=(2x+1)^3$
exchange x for y and y for x
$x=(2y+1)^3$
Cube root each side
$\sqrt[3]{x}=2y+1$
isolate y
$\dfrac{\sqrt[3]{x}-1}{2}=y=f'(x)$so then...
(B)\, \dfrac{1}{54} \quad
(C)\, \dfrac{1}{27} \quad
(D)\, \dfrac{1}{6} \quad
(E)\, 6$ok not sure what the best steps on this would be but assume we first find $f^{-1}(x)$so rewrite at
$y=(2x+1)^3$
exchange x for y and y for x
$x=(2y+1)^3$
Cube root each side
$\sqrt[3]{x}=2y+1$
isolate y
$\dfrac{\sqrt[3]{x}-1}{2}=y=f'(x)$so then...
Last edited: