- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{231.13.3.75}$
$\textsf{Imagine $3$ unit spheres (radius equal to 1) }$
$\textsf{with centers at, $o(0,0,0)$, $p(\sqrt{3},-1,0)$ and $q(\sqrt{3},1,0)$.} \\$
$\textsf{Now place another unit sphere symmetrically on top of these spheres with its center at R.} \\$
$\textsf{a Find the center of R.} \\$
$\textsf{b. Let $r_\eta$ be the vector from the center
of the sphere $i$ to the center of sphere $j$} \\$
$\textsf{Find $\displaystyle r_{op} , r_{oq}, r_{pq}, r_{or} , $ and $r_{pr}$} $
$\textit{ok, first, I don't think I understand what this looks like ??}$
$\textsf{Imagine $3$ unit spheres (radius equal to 1) }$
$\textsf{with centers at, $o(0,0,0)$, $p(\sqrt{3},-1,0)$ and $q(\sqrt{3},1,0)$.} \\$
$\textsf{Now place another unit sphere symmetrically on top of these spheres with its center at R.} \\$
$\textsf{a Find the center of R.} \\$
$\textsf{b. Let $r_\eta$ be the vector from the center
of the sphere $i$ to the center of sphere $j$} \\$
$\textsf{Find $\displaystyle r_{op} , r_{oq}, r_{pq}, r_{or} , $ and $r_{pr}$} $
$\textit{ok, first, I don't think I understand what this looks like ??}$