- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{242.17.8}$
2000
$\textrm{Solve the given equation by variation of parameters.}$
\begin{align*}\displaystyle
y''-10y'+25y&=2e^{5x}\\
\end{align*}
$\textrm{the homogeneous equation:}$
\begin{align*}\displaystyle
x^2-10x+25&=0\\
(x-5)^2&=0\\
x&=5\\
y_h&=c_1 e^{5x}+c_2x^{5x}
\end{align*}
$\textit{now what}$
2000
$\textrm{Solve the given equation by variation of parameters.}$
\begin{align*}\displaystyle
y''-10y'+25y&=2e^{5x}\\
\end{align*}
$\textrm{the homogeneous equation:}$
\begin{align*}\displaystyle
x^2-10x+25&=0\\
(x-5)^2&=0\\
x&=5\\
y_h&=c_1 e^{5x}+c_2x^{5x}
\end{align*}
$\textit{now what}$
Last edited: