- #1
karush
Gold Member
MHB
- 3,269
- 5
$\large{242.7.5.88}$
$$\displaystyle
I_{88}=\int\frac{dx}{(x+2)\sqrt{{x}^{2}+4x+3}}=
-\arcsin\left(\dfrac{1}{\left|x+2\right|}\right)+C $$
complete the square of
$${x}^{2}+4x+3 ={x}^{2}+4x+3+1-1=(x+2)^2-1 $$
Set $u=(x+2) \ \ du=dx$ then
$$\displaystyle I_{88}=\int\frac{1}{u \sqrt{u^2-1}} \, du \\
u=\cosh(y) \ \ du=\sinh(y) \, dy$$
$$\displaystyle I_{88}
=\int\frac{\sinh(y)}{\cosh(y) \sqrt{cosh^2(y) -1}} \, dy
=\int. ? $$
$$\displaystyle
I_{88}=\int\frac{dx}{(x+2)\sqrt{{x}^{2}+4x+3}}=
-\arcsin\left(\dfrac{1}{\left|x+2\right|}\right)+C $$
complete the square of
$${x}^{2}+4x+3 ={x}^{2}+4x+3+1-1=(x+2)^2-1 $$
Set $u=(x+2) \ \ du=dx$ then
$$\displaystyle I_{88}=\int\frac{1}{u \sqrt{u^2-1}} \, du \\
u=\cosh(y) \ \ du=\sinh(y) \, dy$$
$$\displaystyle I_{88}
=\int\frac{\sinh(y)}{\cosh(y) \sqrt{cosh^2(y) -1}} \, dy
=\int. ? $$
Last edited: