- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{242.tr.05}$
Use the integral test to determine
if a series converges.
$\displaystyle
\sum_{n=1}^{\infty}\frac{1}{\sqrt{e^{2n}-1}}$
so...
$\displaystyle
\int_{1}^{\infty} \frac{1}{\sqrt{e^{2n}-1}}\, dn
=\int_{1}^{\infty} (e^{2n}-1)^{1/2} \, dn $
so
$u=e^{2n}-1\therefore du=2e^{2n}$
Use the integral test to determine
if a series converges.
$\displaystyle
\sum_{n=1}^{\infty}\frac{1}{\sqrt{e^{2n}-1}}$
so...
$\displaystyle
\int_{1}^{\infty} \frac{1}{\sqrt{e^{2n}-1}}\, dn
=\int_{1}^{\infty} (e^{2n}-1)^{1/2} \, dn $
so
$u=e^{2n}-1\therefore du=2e^{2n}$
Last edited: