- #1
karush
Gold Member
MHB
- 3,269
- 5
$\large{242.ws3.1}\\$
$\d{}{x}e^{x}=e^{x}$ and $\d{}{x}\left[\tan^{-1}\left({x}\right)\right]=\frac{1}{1+{x}^{2}}$
find the derivative
$$\d{}{x} \left[e^{\arctan{x}} - \arctan{(e^x)}\right]
=\dfrac{\mathrm{e}^{\arctan\left(x\right)}}{x^2+1}-\dfrac{\mathrm{e}^x}{\mathrm{e}^{2x}+1}$$
tried but got lost
$\d{}{x}e^{x}=e^{x}$ and $\d{}{x}\left[\tan^{-1}\left({x}\right)\right]=\frac{1}{1+{x}^{2}}$
find the derivative
$$\d{}{x} \left[e^{\arctan{x}} - \arctan{(e^x)}\right]
=\dfrac{\mathrm{e}^{\arctan\left(x\right)}}{x^2+1}-\dfrac{\mathrm{e}^x}{\mathrm{e}^{2x}+1}$$
tried but got lost
Last edited: