242.ws3.1 d/dx of e^arctan{x} - arctan{e^x}

  • MHB
  • Thread starter karush
  • Start date
In summary, the derivative of the given expression is $\dfrac{\mathrm{e}^{\arctan\left(x\right)}}{x^2+1}-\dfrac{\mathrm{e}^x}{\mathrm{e}^{2x}+1}$.
  • #1
karush
Gold Member
MHB
3,269
5
$\large{242.ws3.1}\\$
$\d{}{x}e^{x}=e^{x}$ and $\d{}{x}\left[\tan^{-1}\left({x}\right)\right]=\frac{1}{1+{x}^{2}}$

find the derivative
$$\d{}{x} \left[e^{\arctan{x}} - \arctan{(e^x)}\right]
=\dfrac{\mathrm{e}^{\arctan\left(x\right)}}{x^2+1}-\dfrac{\mathrm{e}^x}{\mathrm{e}^{2x}+1}$$

tried but got lost
 
Last edited:
Physics news on Phys.org
  • #2
I think what I would do is begin by defining:

\(\displaystyle f=e^{\arctan(x)}\)

Convert from exponential to logarithmic form:

\(\displaystyle \ln(f)=\arctan(x)\)

Now, implicitly differentiate:

\(\displaystyle \frac{f'}{f}=\frac{1}{x^2+1}\)

Hence:

\(\displaystyle f'=\frac{f}{x^2+1}=\frac{e^{\arctan(x)}}{x^2+1}\)

Okay, next let's define:

\(\displaystyle g=\arctan\left(e^x\right)\)

Take the tangent of both sides:

\(\displaystyle \tan(g)=e^x\)

Implicitly differentiate:

\(\displaystyle \sec^2(g)g'=e^x\)

Hence:

\(\displaystyle g'=\frac{e^x}{\sec^2(g)}=\frac{e^x}{\tan^2(g)+1}=\frac{e^x}{e^{2x}+1}\)

And so we have:

\(\displaystyle \frac{d}{dx}(f-g)=f'-g'=\frac{e^{\arctan(x)}}{x^2+1}-\frac{e^x}{e^{2x}+1}\)
 

FAQ: 242.ws3.1 d/dx of e^arctan{x} - arctan{e^x}

What is the derivative of e^arctan{x} - arctan{e^x}?

The derivative of e^arctan{x} - arctan{e^x} is 1 / (1+x^2) - 1 / (1+e^2x).

How do you calculate the derivative of e^arctan{x} - arctan{e^x}?

To calculate the derivative of e^arctan{x} - arctan{e^x}, you can use the chain rule and the derivative of arctan{x} is 1 / (1+x^2). The derivative of e^x is e^x.

What is the domain of e^arctan{x} - arctan{e^x}?

The domain of e^arctan{x} - arctan{e^x} is all real numbers.

What is the range of e^arctan{x} - arctan{e^x}?

The range of e^arctan{x} - arctan{e^x} is all real numbers.

Can the derivative of e^arctan{x} - arctan{e^x} be simplified?

Yes, the derivative of e^arctan{x} - arctan{e^x} can be simplified to (e^x - x) / (1 + x^2 * e^2x).

Similar threads

Back
Top