- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{242t.8.5.9}$
$\textsf{expand the quotient by}$ $\textbf{ partial fractions}$
\begin{align*}\displaystyle
y&=\int\frac{dx}{9-25x^2} &\tiny{(1)}\\
\end{align*}
$\textit{expand and multiply every term by $(3+5x)(3-5x)$}$
\begin{align*}\displaystyle
\frac{1}{9-25x^2}&=\frac{A}{(3-5x)}-\frac{B}{(3+5x)}\\
1&=A(3+5x)-B(3-5x)
\end{align*}
$\textit{ok my question here is.. if you use values to get A0 or B0 you have to use fractions}\\$
$\textit{ is there alt method or just go with $x=\pm \frac{3}{5}$}\\ \\$
$\textit{book answer}$
\begin{align*}\displaystyle
y_{pf}&=\frac{1}{30}(\ln\left|5x+3 \right|-\ln|5x-3|)+C
\end{align*}
$\textsf{expand the quotient by}$ $\textbf{ partial fractions}$
\begin{align*}\displaystyle
y&=\int\frac{dx}{9-25x^2} &\tiny{(1)}\\
\end{align*}
$\textit{expand and multiply every term by $(3+5x)(3-5x)$}$
\begin{align*}\displaystyle
\frac{1}{9-25x^2}&=\frac{A}{(3-5x)}-\frac{B}{(3+5x)}\\
1&=A(3+5x)-B(3-5x)
\end{align*}
$\textit{ok my question here is.. if you use values to get A0 or B0 you have to use fractions}\\$
$\textit{ is there alt method or just go with $x=\pm \frac{3}{5}$}\\ \\$
$\textit{book answer}$
\begin{align*}\displaystyle
y_{pf}&=\frac{1}{30}(\ln\left|5x+3 \right|-\ln|5x-3|)+C
\end{align*}