- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{242t.9.1.15}$
$\textsf{Use Euler's method to calculate the first three approximations}$
$\textsf{to the given initial value problem for the specified increment size.}$
$\textsf{Calculate the exact solution. Round to 4 decimal places.}$
\begin{align*}\displaystyle
\frac{dy}{dx}&=9x^8e^{-x^9}\, , y_{(0)}=8, \, dx=0.5 \\
\end{align*}
$\textit{$x_0=0$}$
\begin{align*}\displaystyle
y_1& =y_0 +\left(x_0 \cdot y_0 \right)\cdot dx \\
&=8+\left(-9(0)^8\cdot e^{0^9} \right)\cdot 0.5 =\color{red}{8}
\end{align*}
$\textit{ $x_1=x_0+dx$ then
$x_1 \therefore x_1=0.5$}$
\begin{align*}\displaystyle
y_2&=y_1+\left(9(x_1)^8 \cdot
e^{{(-x_1)}^8}
\right)\\
&=8+\left( 9(0.5)^8 \cdot e^{{-0.5}^9} \cdot 0.5 \right)=\color{red}{7.9825}
\end{align*}
$\textit{$x_2=x_{1}+0.5$ to then
$x_2 \therefore x_2=0.5+0,5=1$}$
\begin{align*}\displaystyle
y_3&=7.9825+\left( 9(1)^8 \cdot e^{{-1}^9} \cdot 0.5 \right)=\color{red}{6.327}
\end{align*}
\begin{align*}\displaystyle
y_{exact}&=\int 9x^8e^{-x^9} dx
=e^{-x^8}+C
=\color{red}{e^{-x^8}+7}
\end{align*}
$\textit{hopefully... suggestions}$
$\textsf{Use Euler's method to calculate the first three approximations}$
$\textsf{to the given initial value problem for the specified increment size.}$
$\textsf{Calculate the exact solution. Round to 4 decimal places.}$
\begin{align*}\displaystyle
\frac{dy}{dx}&=9x^8e^{-x^9}\, , y_{(0)}=8, \, dx=0.5 \\
\end{align*}
$\textit{$x_0=0$}$
\begin{align*}\displaystyle
y_1& =y_0 +\left(x_0 \cdot y_0 \right)\cdot dx \\
&=8+\left(-9(0)^8\cdot e^{0^9} \right)\cdot 0.5 =\color{red}{8}
\end{align*}
$\textit{ $x_1=x_0+dx$ then
$x_1 \therefore x_1=0.5$}$
\begin{align*}\displaystyle
y_2&=y_1+\left(9(x_1)^8 \cdot
e^{{(-x_1)}^8}
\right)\\
&=8+\left( 9(0.5)^8 \cdot e^{{-0.5}^9} \cdot 0.5 \right)=\color{red}{7.9825}
\end{align*}
$\textit{$x_2=x_{1}+0.5$ to then
$x_2 \therefore x_2=0.5+0,5=1$}$
\begin{align*}\displaystyle
y_3&=7.9825+\left( 9(1)^8 \cdot e^{{-1}^9} \cdot 0.5 \right)=\color{red}{6.327}
\end{align*}
\begin{align*}\displaystyle
y_{exact}&=\int 9x^8e^{-x^9} dx
=e^{-x^8}+C
=\color{red}{e^{-x^8}+7}
\end{align*}
$\textit{hopefully... suggestions}$
Last edited: