MHB 242t.9.1.15 Use Euler's method to calculate the first three approximations

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{242t.9.1.15}$
$\textsf{Use Euler's method to calculate the first three approximations}$
$\textsf{to the given initial value problem for the specified increment size.}$
$\textsf{Calculate the exact solution. Round to 4 decimal places.}$
\begin{align*}\displaystyle
\frac{dy}{dx}&=9x^8e^{-x^9}\, , y_{(0)}=8, \, dx=0.5 \\
\end{align*}
$\textit{$x_0=0$}$
\begin{align*}\displaystyle
y_1& =y_0 +\left(x_0 \cdot y_0 \right)\cdot dx \\
&=8+\left(-9(0)^8\cdot e^{0^9} \right)\cdot 0.5 =\color{red}{8}
\end{align*}
$\textit{ $x_1=x_0+dx$ then
$x_1 \therefore x_1=0.5$}$
\begin{align*}\displaystyle
y_2&=y_1+\left(9(x_1)^8 \cdot
e^{{(-x_1)}^8}
\right)\\
&=8+\left( 9(0.5)^8 \cdot e^{{-0.5}^9} \cdot 0.5 \right)=\color{red}{7.9825}
\end{align*}
$\textit{$x_2=x_{1}+0.5$ to then
$x_2 \therefore x_2=0.5+0,5=1$}$
\begin{align*}\displaystyle
y_3&=7.9825+\left( 9(1)^8 \cdot e^{{-1}^9} \cdot 0.5 \right)=\color{red}{6.327}
\end{align*}
\begin{align*}\displaystyle
y_{exact}&=\int 9x^8e^{-x^9} dx
=e^{-x^8}+C
=\color{red}{e^{-x^8}+7}
\end{align*}
$\textit{hopefully... suggestions}$ :cool:
 
Last edited:
Physics news on Phys.org
Your solution to the given IVP isn't correct...we are given:

$$\d{y}{x}=9x^8e^{-x^9}$$ where $$y(0)=8$$

$$\int_{y(0)}^{y(x)}\,du=\int_0^x 9v^8e^{-v^9}\,dv=-\int_0^{-x^9} e^w\,dw$$

$$y(x)=1+y(0)-e^{-x^9}$$

With $$y(0)=8$$, our solution is then:

$$y(x)=9-e^{-x^9}$$

Even without knowing the solution, we see the slope is positive for all $0<x$, so we should expect our approximations to be increasing as $x$ increases. Let's look at Euler's method for approximating $$y(1.5)=9-e^{-1.5^9}\approx9$$

$$y_0=8,\,x_0=0,\,\Delta x=0.5$$

$$y_1=8+0.5(9(0)^8e^{-0^9})=8$$

$$y_2=8+0.5\left(9(0.5)^8e^{-0.5^9}\right)\approx8.017543826230405$$

$$y_3=8.017543826230405+0.5\left(9(1)^8e^{-1^9}\right)\approx9.673001311501896$$

Can you explain why we got a value greater than 9 when we know:

$$\lim_{x\to\infty}y=9$$ ?

How could we improve this scheme for this function?
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...

Similar threads

Replies
3
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
2
Views
2K
Back
Top