- #1
karush
Gold Member
MHB
- 3,269
- 5
\tiny{243.12.5.21}
$\textsf{Use a calculator to find the acute angle between the planes to the nearest thousandth of a radian.}$
$$\textit{$3x+10y+7z=9$ and $7x+ 2y + 9z = 3$}$$
\begin{align*}\displaystyle
u&=3x+10y+7z=9\\
v&=7x+2y+9z=3\\
u \cdot v&=3\cdot7+10\cdot2+7\cdot9\\
&=21+20+63=104\\
|u|&=\sqrt{3^2+10^2+7^2}=\sqrt{158}\\
|v|&=\sqrt{7^2+2^2+9^2}=\sqrt{134}\\
\end{align*}
$\textit{therefore}$
\begin{align*}\displaystyle
\theta&=\cos^{-1}\left[\frac{u\cdot v}{|u||v|} \right]\\
&=\cos^{-1}\left[\frac{104}
{|\sqrt{158}||\sqrt{134}|} \right]\\
W|A &=\color{red}{\textbf{$0.775$ rad}}
\end{align*}
think this is ok so any suggestions
also why can we drop the 9 and 3 for dot product?
$\textsf{Use a calculator to find the acute angle between the planes to the nearest thousandth of a radian.}$
$$\textit{$3x+10y+7z=9$ and $7x+ 2y + 9z = 3$}$$
\begin{align*}\displaystyle
u&=3x+10y+7z=9\\
v&=7x+2y+9z=3\\
u \cdot v&=3\cdot7+10\cdot2+7\cdot9\\
&=21+20+63=104\\
|u|&=\sqrt{3^2+10^2+7^2}=\sqrt{158}\\
|v|&=\sqrt{7^2+2^2+9^2}=\sqrt{134}\\
\end{align*}
$\textit{therefore}$
\begin{align*}\displaystyle
\theta&=\cos^{-1}\left[\frac{u\cdot v}{|u||v|} \right]\\
&=\cos^{-1}\left[\frac{104}
{|\sqrt{158}||\sqrt{134}|} \right]\\
W|A &=\color{red}{\textbf{$0.775$ rad}}
\end{align*}
think this is ok so any suggestions
also why can we drop the 9 and 3 for dot product?