- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{Write a complete solution.}\\$
$\textit{Let}$ $$v =\langle 1, 3, − 1 \rangle$$
$\textit{and }$ $$r_0 =\langle 1, 1, 1 \rangle$$
$\textit{and consider the line given by:}\\$ $$r = r_0+tv$$
$\textit{in vector form.}\\$
$\textit{Also, consider the plane given by}$
$$x+2y+2z+2 = 0$$
$\textit{(a) Show that the line and the plane are not parallel.}\\$
$\textit{(b) Find the point on the line at distance 3 from the plane.}\\$
ok just posting this now to come back later to finish it.
to start with...
\begin{align*}\displaystyle
r&= r_0+tv\\
&=\langle 1, 1, 1 \rangle + t\langle 1, 3, − 1 \rangle\\
&=t+1,3t+1,-t+1
\end{align*}
$\textit{Let}$ $$v =\langle 1, 3, − 1 \rangle$$
$\textit{and }$ $$r_0 =\langle 1, 1, 1 \rangle$$
$\textit{and consider the line given by:}\\$ $$r = r_0+tv$$
$\textit{in vector form.}\\$
$\textit{Also, consider the plane given by}$
$$x+2y+2z+2 = 0$$
$\textit{(a) Show that the line and the plane are not parallel.}\\$
$\textit{(b) Find the point on the line at distance 3 from the plane.}\\$
ok just posting this now to come back later to finish it.
to start with...
\begin{align*}\displaystyle
r&= r_0+tv\\
&=\langle 1, 1, 1 \rangle + t\langle 1, 3, − 1 \rangle\\
&=t+1,3t+1,-t+1
\end{align*}