- #1
karush
Gold Member
MHB
- 3,269
- 5
$$\tiny{243.13.01.18}$$
$\textsf{The following equations each describe the motion of a particle.}\\$
$\textsf{For which path is the particle's velocity vector always orthogonal to its acceleration vector?}$
$\begin{align*} \displaystyle
(1) r(t)&=t^8i+t^5j\\
(2) r(t)&=\cos(8t)i+\sin(2t)j\\
(3) r(t)&=ti+t^3j\\
(4) r(t)&=\cos{(10t)}i+\sin(10t)j\\
\end{align*}$I presume this would mean a constant value?
$\textsf{The following equations each describe the motion of a particle.}\\$
$\textsf{For which path is the particle's velocity vector always orthogonal to its acceleration vector?}$
$\begin{align*} \displaystyle
(1) r(t)&=t^8i+t^5j\\
(2) r(t)&=\cos(8t)i+\sin(2t)j\\
(3) r(t)&=ti+t^3j\\
(4) r(t)&=\cos{(10t)}i+\sin(10t)j\\
\end{align*}$I presume this would mean a constant value?