- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{243.13.01.19}$
$\textsf{The following equations each describe the motion of a particle.}$
$\textsf{ For which path is the particle's speed constant?}$
\begin{align*} \displaystyle
R_1(t)&= t^7\textbf{i}+t^4\textbf{j}\\
R_2(t)&= \cos(3t)\textbf{i}+\sin(8t)\textbf{j}\\
R_3(t)&= t\textbf{i}+t\textbf{j}\\
R_4(t)&= \cos(3t^2)\textbf{i}+\sin(3t^2)\textbf{j}\\
%\textit{speed constant on}&=\color{red}{Path(3)}
\end{align*}
$\textit{By observation I would quess $ \, R_3(t)= t\textbf{i}+t\textbf{j}$ so then: }$
\begin{align*} \displaystyle
R_3(t)&= t\textbf{i}+t\textbf{j}\\
R_3^\prime (t)=V_3(t)&=\textbf{i}+\textbf{j}
\end{align*}
$\textit{so then dot product}$
\begin{align*}\displaystyle
\theta&=\cos^{-1}\left[\frac{u\cdot v}{|u||v|} \right] \\
&=\cos^{-1}\left[\frac{(t\textbf{i}+t\textbf{j})\cdot(\textbf{i}+\textbf{j})}
{|t\textbf{i}+t\textbf{j}||\textbf{i}+\textbf{j}|} \right]\\
\end{align*}
kinda maybe!
$\textsf{The following equations each describe the motion of a particle.}$
$\textsf{ For which path is the particle's speed constant?}$
\begin{align*} \displaystyle
R_1(t)&= t^7\textbf{i}+t^4\textbf{j}\\
R_2(t)&= \cos(3t)\textbf{i}+\sin(8t)\textbf{j}\\
R_3(t)&= t\textbf{i}+t\textbf{j}\\
R_4(t)&= \cos(3t^2)\textbf{i}+\sin(3t^2)\textbf{j}\\
%\textit{speed constant on}&=\color{red}{Path(3)}
\end{align*}
$\textit{By observation I would quess $ \, R_3(t)= t\textbf{i}+t\textbf{j}$ so then: }$
\begin{align*} \displaystyle
R_3(t)&= t\textbf{i}+t\textbf{j}\\
R_3^\prime (t)=V_3(t)&=\textbf{i}+\textbf{j}
\end{align*}
$\textit{so then dot product}$
\begin{align*}\displaystyle
\theta&=\cos^{-1}\left[\frac{u\cdot v}{|u||v|} \right] \\
&=\cos^{-1}\left[\frac{(t\textbf{i}+t\textbf{j})\cdot(\textbf{i}+\textbf{j})}
{|t\textbf{i}+t\textbf{j}||\textbf{i}+\textbf{j}|} \right]\\
\end{align*}
kinda maybe!