2nd Degree Inderteminacy for Structure Using Force Method

  • #1
Tygra
21
4
Homework Statement
Calculating Deflections
Relevant Equations
In question
Dear all

I am trying to find the support reactions on the following structure:

Structure.png


The frame member in the horizontal is 8m long and in the vertical the member is 5m.

To do this I am using the force method (or unit load method or virtual work method).

Firstly, I removing the redundants at the pinned support to make a statically determinant frame as shown below:

Removing redundant.png


Next, I apply units loads in place of the pinned support that looks like this:

Unit loads.png



Firstly, lets consider the horizontal unit load. I need the displacement in the parallel and perpendicular directions as a result of this horizontal unit load.

Calculating the horizontal displacement as a result of this load is no problem. It is simply the sumof the integration of the bending moments.

Virtual structure Moment.png


So, the moment functions are: Mx = -1*x and Mx = 5. Hence, the integration to compute the delection in the horizontal direction is

1728644942535.png


The area where I am a little stuck is computing the vertical deflection as a result of the horizontal unit load.

If you see here from the software the vertical displacement is 4.074 mm.

Virtual structure displacement.png

So my question is: how do I calculate this displacement using the force method?


Many thanks in advance.
 

Attachments

  • 1728644922994.png
    1728644922994.png
    4.1 KB · Views: 1
  • 1728644874711.png
    1728644874711.png
    3.5 KB · Views: 2
Physics news on Phys.org
  • #2
I can follow your description, but it is impossible to see details of the posted diagrams.
 
  • #3
Hi Lnewqban,

Sorry for this.

Is this any better?

Frame:

Frame.png


Statically Determinant Frame
Primary Structure.png


Application of Unit Loads:
Unit loads.png


Bending Moment diagram for horizontal unit load:

bending moment.png


Displacement for horizontal unit load:

displacement.png


Bending moment diagram for vertical unit load:

bending moment 2.png


Displacement for vertical unit load:

displacement2.png
 

Attachments

  • Primary Structure.png
    Primary Structure.png
    2.7 KB · Views: 1
  • #4
The numbers can't be clearly seen still.
I see that the diagrams shown the deformation do not match how the structure would really deform.
Hinge 3 can't move horizontally and joint 2 can't move upwards.
The beam located next to 1 can't remain horizontal due to the distributed load.
The angle of joint 2 should remain more or less 90°.
 

Similar threads

Replies
1
Views
1K
Replies
3
Views
465
Replies
1
Views
3K
Replies
6
Views
2K
Replies
4
Views
2K
Replies
2
Views
561
Back
Top