- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{307w.3.2.5.3}$
https://mathhelpboards.com/{http%3A//faculty.sfasu.edu/judsontw/ode/html-snapshot/linear02.html
Find the general solution of each of the linear system
\begin{align*}
x' & = -3 x + 4y\\
y' & = 3x - 2y
\end{align*}
$A=\begin{pmatrix}-3&4\\ 3&-2\end{pmatrix}
=\left[\begin{array}{rr}- \lambda - 3 & 4\\3 & - \lambda - 2\end{array}\right]
=\lambda^{2} + 5 \lambda - 6 = 0
\quad \lambda_1=-5\quad \lambda_2=6$
\textit{ eigenvector:}$\left[
\begin{array}{r}1\\1\end{array}\right]$
and eigenvector:
$\left[\begin{array}{r}- \frac{4}{3}\\1\end{array}\right]$
so
$Au=\begin{pmatrix}-3&4\\ 3&-2\end{pmatrix}
\left(\begin{array}{r}1\\1\end{array}\right)
=\left(\begin{array}{r}1\\1\end{array}\right)
=\lambda_1\left(\begin{array}{r}1\\1\end{array}\right)
=e^{-5t}\left[
\begin{array}{r}1\\1\end{array}\right]$
so far... but need other GE
typos probably
tried doing it w/o matrix but :(
https://mathhelpboards.com/{http%3A//faculty.sfasu.edu/judsontw/ode/html-snapshot/linear02.html
Find the general solution of each of the linear system
\begin{align*}
x' & = -3 x + 4y\\
y' & = 3x - 2y
\end{align*}
$A=\begin{pmatrix}-3&4\\ 3&-2\end{pmatrix}
=\left[\begin{array}{rr}- \lambda - 3 & 4\\3 & - \lambda - 2\end{array}\right]
=\lambda^{2} + 5 \lambda - 6 = 0
\quad \lambda_1=-5\quad \lambda_2=6$
\textit{ eigenvector:}$\left[
\begin{array}{r}1\\1\end{array}\right]$
and eigenvector:
$\left[\begin{array}{r}- \frac{4}{3}\\1\end{array}\right]$
so
$Au=\begin{pmatrix}-3&4\\ 3&-2\end{pmatrix}
\left(\begin{array}{r}1\\1\end{array}\right)
=\left(\begin{array}{r}1\\1\end{array}\right)
=\lambda_1\left(\begin{array}{r}1\\1\end{array}\right)
=e^{-5t}\left[
\begin{array}{r}1\\1\end{array}\right]$
so far... but need other GE
typos probably
tried doing it w/o matrix but :(