- #1
karush
Gold Member
MHB
- 3,269
- 5
238
Solve
$$\displaystyle\lim_{h\to 0}
\dfrac{\ln{(4+h)}-\ln{h}}{h}$$
$$(A)\,0\quad
(B)\, \dfrac{1}{4}\quad
(C)\, 1\quad
(D)\, e\quad
(E)\, DNE$$
The Limit diverges so the Limit Does Not Exist (E)ok the only way I saw that it diverges is by plotting
not sure what the rule is that observation would make ploting not needed
also I noticed these AP sample questions are getting a lot of views so thot I would continue to post more
Solve
$$\displaystyle\lim_{h\to 0}
\dfrac{\ln{(4+h)}-\ln{h}}{h}$$
$$(A)\,0\quad
(B)\, \dfrac{1}{4}\quad
(C)\, 1\quad
(D)\, e\quad
(E)\, DNE$$
The Limit diverges so the Limit Does Not Exist (E)ok the only way I saw that it diverges is by plotting
not sure what the rule is that observation would make ploting not needed
also I noticed these AP sample questions are getting a lot of views so thot I would continue to post more