- #1
karush
Gold Member
MHB
- 3,269
- 5
ok this is out of an old textbook and possibly already posted here so..
A movie stunt woman drops from a helicopter that is 30.0 m above the ground and moving with a constant velocity whose components are 10.0 m/s upward and 15.0 m/s horizontal and toward the south. Ignore air resistance.
[a.] Where on the ground (relative to the position of the helicopter when she drops) should the stunt woman have placed the foam mats that break her fall?
well so far... but not sure
$y=y_0+V_0 yt+.5A yt^2$
$0=30+10t[-.5(9.8)t^2]$
so $0=-4.9t^2+10t+30$
later [b.] Draw x-t, y-t, v ft, and v y-t graphs of the motion
A movie stunt woman drops from a helicopter that is 30.0 m above the ground and moving with a constant velocity whose components are 10.0 m/s upward and 15.0 m/s horizontal and toward the south. Ignore air resistance.
[a.] Where on the ground (relative to the position of the helicopter when she drops) should the stunt woman have placed the foam mats that break her fall?
well so far... but not sure
$y=y_0+V_0 yt+.5A yt^2$
$0=30+10t[-.5(9.8)t^2]$
so $0=-4.9t^2+10t+30$
later [b.] Draw x-t, y-t, v ft, and v y-t graphs of the motion
Last edited: