- #1
karush
Gold Member
MHB
- 3,269
- 5
nmh{796}
$\textsf{Suppose $Y_1$ and $Y_2$ form a basis for a 2-dimensional vector space $V$ .}\\$
$\textsf{Show that the vectors $Y_1+Y_2$ and $Y_1−Y_2$ are also a basis for $V$.}$
$$Y_1=\begin{bmatrix}a\\b\end{bmatrix}
\textit{ and }Y_2=\begin{bmatrix}c\\d\end{bmatrix}$$
$\textit{ then }$
$$Y_1+Y_2 =
\begin{bmatrix}a\\b\end{bmatrix}
-\begin{bmatrix}c\\d\end{bmatrix}
=\begin{bmatrix}a+c\\b+d\end{bmatrix}$$
$$Y_1-Y_2 =
\begin{bmatrix}a\\b\end{bmatrix}
-\begin{bmatrix}c\\d\end{bmatrix}
=\begin{bmatrix}a-c\\b-d\end{bmatrix}
$$
so far
$\textsf{Suppose $Y_1$ and $Y_2$ form a basis for a 2-dimensional vector space $V$ .}\\$
$\textsf{Show that the vectors $Y_1+Y_2$ and $Y_1−Y_2$ are also a basis for $V$.}$
$$Y_1=\begin{bmatrix}a\\b\end{bmatrix}
\textit{ and }Y_2=\begin{bmatrix}c\\d\end{bmatrix}$$
$\textit{ then }$
$$Y_1+Y_2 =
\begin{bmatrix}a\\b\end{bmatrix}
-\begin{bmatrix}c\\d\end{bmatrix}
=\begin{bmatrix}a+c\\b+d\end{bmatrix}$$
$$Y_1-Y_2 =
\begin{bmatrix}a\\b\end{bmatrix}
-\begin{bmatrix}c\\d\end{bmatrix}
=\begin{bmatrix}a-c\\b-d\end{bmatrix}
$$
so far
Last edited: