- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{1.5.12}$
Describe all solutions of $Ax=0$ in parametric vector form, where $A$ is row equivalent to the given matrix.
RREF
$A=\left[\begin{array}{rrrrrr}
1&5&2&-6&9& 0\\
0&0&1&-7&4&-8\\
0& 0& 0& 0& 0&1\\
0& 0& 0& 0& 0&0
\end{array}\right]
\sim \left[\begin{array}{rrrrrr}
1&5&0&8&1&0\\
0&0&1&-7&4&-8\\
0& 0& 0& 0& 0&1\\
0& 0& 0& 0& 0&0
\end{array}\right]$
$x_1=-5x_2-8x_4-x_5$ $x_2$ free $x_3=7x_4-4x_5$ $x_4$ free $ x_5\ free $x_6=0$
solution\\
$x_2\left[\begin{array}{rrrrrr}
-5\\1\\0\\0\\0\\0
\end{array}\right]
+x_4\left[\begin{array}{rrrrrr}
-8\\0\\7\\1\\0\\0
\end{array}\right]
+x_5\left[\begin{array}{rrrrrr}
-1\\0\\-4\\0\\1\\0
\end{array}\right]$
ok this appears to be the answer but I still don't see how the origin is 0 or we have || planes
Describe all solutions of $Ax=0$ in parametric vector form, where $A$ is row equivalent to the given matrix.
RREF
$A=\left[\begin{array}{rrrrrr}
1&5&2&-6&9& 0\\
0&0&1&-7&4&-8\\
0& 0& 0& 0& 0&1\\
0& 0& 0& 0& 0&0
\end{array}\right]
\sim \left[\begin{array}{rrrrrr}
1&5&0&8&1&0\\
0&0&1&-7&4&-8\\
0& 0& 0& 0& 0&1\\
0& 0& 0& 0& 0&0
\end{array}\right]$
$x_1=-5x_2-8x_4-x_5$ $x_2$ free $x_3=7x_4-4x_5$ $x_4$ free $ x_5\ free $x_6=0$
solution\\
$x_2\left[\begin{array}{rrrrrr}
-5\\1\\0\\0\\0\\0
\end{array}\right]
+x_4\left[\begin{array}{rrrrrr}
-8\\0\\7\\1\\0\\0
\end{array}\right]
+x_5\left[\begin{array}{rrrrrr}
-1\\0\\-4\\0\\1\\0
\end{array}\right]$
ok this appears to be the answer but I still don't see how the origin is 0 or we have || planes