MHB 311.1.5.12 Ax=0 in parametric vector form

Click For Summary
The discussion focuses on finding all solutions of the equation Ax=0 in parametric vector form, where A is given in reduced row echelon form (RREF). The solution is expressed with free variables x2, x4, and x5, leading to a parametric representation involving vectors. Participants debate the relevance of concepts like the origin and parallel planes, clarifying that the problem does not explicitly mention these concepts. The solution set is identified as a two-dimensional subspace of R^6, emphasizing the dimensionality of the solution space. Overall, the conversation highlights the mathematical approach to understanding the solution of the linear system without delving into geometric interpretations.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{1.5.12}$
Describe all solutions of $Ax=0$ in parametric vector form, where $A$ is row equivalent to the given matrix.
RREF
$A=\left[\begin{array}{rrrrrr}
1&5&2&-6&9& 0\\
0&0&1&-7&4&-8\\
0& 0& 0& 0& 0&1\\
0& 0& 0& 0& 0&0
\end{array}\right]
\sim \left[\begin{array}{rrrrrr}
1&5&0&8&1&0\\
0&0&1&-7&4&-8\\
0& 0& 0& 0& 0&1\\
0& 0& 0& 0& 0&0
\end{array}\right]$
$x_1=-5x_2-8x_4-x_5$ $x_2$ free $x_3=7x_4-4x_5$ $x_4$ free $ x_5\ free $x_6=0$
solution\\
$x_2\left[\begin{array}{rrrrrr}
-5\\1\\0\\0\\0\\0
\end{array}\right]
+x_4\left[\begin{array}{rrrrrr}
-8\\0\\7\\1\\0\\0
\end{array}\right]
+x_5\left[\begin{array}{rrrrrr}
-1\\0\\-4\\0\\1\\0
\end{array}\right]$

ok this appears to be the answer but I still don't see how the origin is 0 or we have || planes
 
Physics news on Phys.org
??This problem has nothing to do with "the origin" or "planes"!
 
ok i presume it is about parallel planes
 
Why? What was the exact statement of this problem and what makes you "presume" it is about parallel planes?
 
Country Boy said:
Why? What was the exact statement of this problem and what makes you "presume" it is about parallel planes?
Screenshot 2020-10-30 at 9.56.19 AM.png

#12
 
I see nothing there that says anything about "planes" or "parallel planes"!
 
ok so there is no possible graph of this
 
I have no idea what you are talking about! There is no mention of "planes" or "graphs" in this problem. Where are you getting this from? For problem 12, you have four equations in six unknowns. You could graph it- in 6 dimensions. The solution set is a two dimensional subspace of R^6.

But problem 9 has two equations in three dimensions: 3x- 6y+ 9z= 0 and -x+ 3y- 2z= 0. From the first equation, x= 2y- 3z. From the second equation, x= 3y- 2z. So x= 2y+ 3z= 3y- 2z. Add 2z to both sides and subtract 2y from both sides: 5z= y.
Then x= 3(5z)- 2z= 13z.

It solution space is one dimensional, the line in R^3, x= 13t, y= 5t, z= t.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K