- #1
karush
Gold Member
MHB
- 3,269
- 5
Write the solution set of the given homogeneous systems in parametric vector form.
$\begin{array}{rrrr}
-2x_1& +2x_2& +4x_3& =0\\
-4x_1& -4x_2& -8x_3& =0\\
&-3x_2& -3x_3& =0
\end{array}\implies
\left[\begin{array}{rrrr}
x_1\\x_2\\x_3
\end{array}\right]
=\left[\begin{array}{rrrr}
-2\\-4\\\color{red}{0}
\end{array}\right]x_1
+\left[\begin{array}{rrrr}
2\\-4\\-3
\end{array}\right]x_2
+\left[\begin{array}{rrrr}
4\\-8\\-3
\end{array}\right]x_3$
red is a null space
ok its looks straight forward but still ? typos etc
is there an online calculator to check these
no book answer on this one
$\begin{array}{rrrr}
-2x_1& +2x_2& +4x_3& =0\\
-4x_1& -4x_2& -8x_3& =0\\
&-3x_2& -3x_3& =0
\end{array}\implies
\left[\begin{array}{rrrr}
x_1\\x_2\\x_3
\end{array}\right]
=\left[\begin{array}{rrrr}
-2\\-4\\\color{red}{0}
\end{array}\right]x_1
+\left[\begin{array}{rrrr}
2\\-4\\-3
\end{array}\right]x_2
+\left[\begin{array}{rrrr}
4\\-8\\-3
\end{array}\right]x_3$
red is a null space
ok its looks straight forward but still ? typos etc
is there an online calculator to check these
no book answer on this one