- #1
karush
Gold Member
MHB
- 3,269
- 5
Describe all solutions of $Ax=b$ in parametric vector form, where $A$ is row equivalent to the given matrix.
$A=\left[\begin{array}{rrrrr}
1&-3&-8&5\\
0&1&2&-4
\end{array}\right]$
RREF
$\begin{bmatrix}1&0&-2&-7\\ 0&1&2&-4\end{bmatrix}$
general equation
$\begin{array}{rrrrr}
x_1& &-2x_3&-7x_4 & =0\\
&x_2 &2x_3 &-4x_4&=0
\end{array}$
therefore
$x_1=2x_3+7x_4$
$x_2=-2x_3+4x_4$
assume next is $x=x_1[]+x_2[]+x_3[]+x_4[]$
but got ? looking at examples
anyway, so far
$A=\left[\begin{array}{rrrrr}
1&-3&-8&5\\
0&1&2&-4
\end{array}\right]$
RREF
$\begin{bmatrix}1&0&-2&-7\\ 0&1&2&-4\end{bmatrix}$
general equation
$\begin{array}{rrrrr}
x_1& &-2x_3&-7x_4 & =0\\
&x_2 &2x_3 &-4x_4&=0
\end{array}$
therefore
$x_1=2x_3+7x_4$
$x_2=-2x_3+4x_4$
assume next is $x=x_1[]+x_2[]+x_3[]+x_4[]$
but got ? looking at examples
anyway, so far
Last edited: