- #1
karush
Gold Member
MHB
- 3,269
- 5
412.1.1.8 show gcd(a',b')=1
$\tiny{412.1.1.8}$
$\textsf{Let $d=gcd(a,b)$
If $a=da'$ and $b=db'$, show that $gcd(a',b')=1$}$$\textsf{Let $d'=gcd(a'b')$ Since $d=gcd(a,b),$}\\
\textsf{There exists intergers s and t such that $sa+tb=d$}\\
\textsf{Therefore by substitution we have}$
$$s(da')+t(db')=d$$
$\textsf{and so}$
$$sa'+tb'=1$$
$\textsf{Since by assuption }$
$$d'|a' \textit{and} d'|b'$$
$\textsf{we have $d'|1$ Hence $d'=1$}$
ok I think this is it... typos maybe
$\tiny{412.1.1.8}$
$\textsf{Let $d=gcd(a,b)$
If $a=da'$ and $b=db'$, show that $gcd(a',b')=1$}$$\textsf{Let $d'=gcd(a'b')$ Since $d=gcd(a,b),$}\\
\textsf{There exists intergers s and t such that $sa+tb=d$}\\
\textsf{Therefore by substitution we have}$
$$s(da')+t(db')=d$$
$\textsf{and so}$
$$sa'+tb'=1$$
$\textsf{Since by assuption }$
$$d'|a' \textit{and} d'|b'$$
$\textsf{we have $d'|1$ Hence $d'=1$}$
ok I think this is it... typos maybe
Last edited: