- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{412.4.2}$
(a) List the elements of the subgroups $\langle 20\rangle $ and $\langle 10\rangle $ in $\Bbb{Z}_{30}$.
(b) Let $a$ be a group element of order 30.
(c) List the elements of the subgroups $\langle a^{20}\rangle $ and $\langle a^{10}\rangle $.
should be easy ... just never did it
(a) $\Bbb{Z}_{30}=(1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)$
$\langle10\rangle = \{0,10,10^2\}= \{0,10,20\}$
$\langle20\rangle = \{0,20,20^2,20^3,20^4...\}$
$20^2 = 20+20 = 10$ so the elements are $\langle20\rangle = \{0,20,10\}$, same as $\langle10\rangle$ .
kinda maybe
(a) List the elements of the subgroups $\langle 20\rangle $ and $\langle 10\rangle $ in $\Bbb{Z}_{30}$.
(b) Let $a$ be a group element of order 30.
(c) List the elements of the subgroups $\langle a^{20}\rangle $ and $\langle a^{10}\rangle $.
should be easy ... just never did it
(a) $\Bbb{Z}_{30}=(1,2,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)$
$\langle10\rangle = \{0,10,10^2\}= \{0,10,20\}$
$\langle20\rangle = \{0,20,20^2,20^3,20^4...\}$
$20^2 = 20+20 = 10$ so the elements are $\langle20\rangle = \{0,20,10\}$, same as $\langle10\rangle$ .
kinda maybe
Last edited: