- #1
karush
Gold Member
MHB
- 3,269
- 5
\tiny{b.48.2.2.23}
Solve the initial value problem $y'=2y^2+xy^2,\quad y(0)=1$
find min value
$\begin{array}{ll}
\textit{separate variables}
&\dfrac{1}{y^{2}}\ dy=(2+x)\ dx\\ \\
\textit{integrate}
& -\dfrac{1}{y}=2x+\dfrac{x^2}{2}+C\\ \\
\textit{plug in $(0,1)$}
& -\dfrac{1}{1}=0+0+c \therefore c=-1\\ \\
\textit{the equations is}
& y=-1/(x/2+2x-1)+c\\ \\
y'=0 & \textit{returns } x=-2
\end{array}$
typos maybe
Solve the initial value problem $y'=2y^2+xy^2,\quad y(0)=1$
find min value
$\begin{array}{ll}
\textit{separate variables}
&\dfrac{1}{y^{2}}\ dy=(2+x)\ dx\\ \\
\textit{integrate}
& -\dfrac{1}{y}=2x+\dfrac{x^2}{2}+C\\ \\
\textit{plug in $(0,1)$}
& -\dfrac{1}{1}=0+0+c \therefore c=-1\\ \\
\textit{the equations is}
& y=-1/(x/2+2x-1)+c\\ \\
y'=0 & \textit{returns } x=-2
\end{array}$
typos maybe