- #1
ergospherical
- 1,055
- 1,347
Q. Calculate the linearised metric of a spherically symmetric body ##\epsilon M## at the origin. The energy momentum tensor is ##T_{ab} = \epsilon M \delta(\mathbf{r}) u_a u_b##. In the harmonic (de Donder) gauge ##\square \bar{h}_{ab} = -16\pi G \epsilon^{-1} T_{ab}## (proved in previous exercise) so
\begin{align*}
\partial_m \partial^m \bar{h}_{ab} =
\begin{cases}
-16\pi GM \delta(\mathbf{r}) & a = b = 0 \\
0 & \mathrm{otherwise}
\end{cases}
\end{align*}with ##u^a = (1,\mathbf{0})##. What is the Green's function forLaplace d'Alembert in 4d?
\begin{align*}
\partial_m \partial^m \bar{h}_{ab} =
\begin{cases}
-16\pi GM \delta(\mathbf{r}) & a = b = 0 \\
0 & \mathrm{otherwise}
\end{cases}
\end{align*}with ##u^a = (1,\mathbf{0})##. What is the Green's function for
Last edited: