MHB 6.2.15 Find the domain of each function.

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Domain Function
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{6.2.15 Find the domain of each function.}$
(a) $f(x)=\dfrac{1-e^{x^2}}{1-e^{1-x^2}}$
set the denominator to zero and solve
$1-e^{1-x^2}=0$
then
$x=1,-1$
from testing the domain is
$(-1,1)$(b) $f(x)=\dfrac{1+x}{e^{ \cos x}}$
set $e^{\cos x}=0$ which is $x\in \mathbb{R}$
so domain is
$(-\infty,\infty)$Ok, I think these are correct don't know the book answer
I did this mostly via obervation with the denominator but presume limit should be used otherwise
 
Physics news on Phys.org
(a) $1-e^{1-x^2} \ne 0 \implies \text{ domain is } x \in (-\infty,-1) \cup (-1,1) \cup (1,\infty) \text{ or } x \in \mathbb{R} \, ; \, x \ne \pm 1$

(b) $e^{\cos{x}} \ne 0 \text{ for all } x \in \mathbb{R} \implies \text{ domain is } x \in \mathbb{R}$
 
oh...
 
Do you understand why you set the denominator equal to 0?
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top