- #1
karush
Gold Member
MHB
- 3,269
- 5
Solve the differential equation
$x'=x+\sin(t)$
ok this uses x rather than y which threw me off
so rewrite as
$x'-x=\sin(t)$
thus $u(t)=e^{-t}$
$e^{-t}x'-e^{-t}x=e^{-t}\sin{t}$
and
$(e^{-t}x)'=e^{-t}\sin{t}$
intergrate thru
$\displaystyle e^{-t}x=\int {e^{-t} \sin(t)} dt = -1/2 e^{-t}\sin(t) - 1/2 e^{-t} \cos(t) +e^{-t} c$
divide thru
$\displaystyle x(t)=-\frac{\sin t}{2}-\frac{\sin t}{2}+ce^t$ok well typos probably
W|A returned $\displaystyle x(t) = c_1 e^t - \frac{\sin(t)}{2} - \frac{cos(t)}{2}$
$x'=x+\sin(t)$
ok this uses x rather than y which threw me off
so rewrite as
$x'-x=\sin(t)$
thus $u(t)=e^{-t}$
$e^{-t}x'-e^{-t}x=e^{-t}\sin{t}$
and
$(e^{-t}x)'=e^{-t}\sin{t}$
intergrate thru
$\displaystyle e^{-t}x=\int {e^{-t} \sin(t)} dt = -1/2 e^{-t}\sin(t) - 1/2 e^{-t} \cos(t) +e^{-t} c$
divide thru
$\displaystyle x(t)=-\frac{\sin t}{2}-\frac{\sin t}{2}+ce^t$ok well typos probably
W|A returned $\displaystyle x(t) = c_1 e^t - \frac{\sin(t)}{2} - \frac{cos(t)}{2}$
Last edited: