7.3.5 Integral with trig substitution

In summary: So in summary, we evaluated the given integral using the common integrals table and trigonometric substitution to find that the solution is $-\frac x 2\sqrt{9-x^2}+\frac 9 2 \arcsin\left( \frac x 3 \right )+C$.
  • #1
karush
Gold Member
MHB
3,269
5
$\textsf{Evaluate the integral}$
$$I=\displaystyle\int\frac{x^2}{\sqrt{9-x^2}}$$
$\textit{from the common Integrals Table we have}$
$$\displaystyle I=\int\frac{u^2}{\sqrt{u^2-a^2}} \, du
=\frac{u}{2}\sqrt{u^2-a^2}+\frac{a^2}{2}
\ln\left|u+\sqrt{u^2-a^2}\right|+C$$
$\textit{Thus if $u=x$ and $a=3$ we have}$
$$I_{44}=\int\frac{x^2}{\sqrt{x^2-3^2}} \, dx
=\frac{x}{2}\sqrt{x^2-3^2}+\frac{3^2}{2}
\ln\left|x+\sqrt{x^2-3^2}\right|+C$$
$\textit{or simplified}$
$$I_{44}=\int\frac{9}{\sqrt{x^2-9}} \, dx
=\frac{x}{2}\sqrt{x^2-9}+\frac{9}{2}
\ln\left|x+\sqrt{x^2-9}\right|+C$$

$\textit{so by using trig substitution to derive this we have}\\$
$\textit{$x=3\sin{u}\quad dx=3\cos{u} \, du $}$
\begin{align*}\displaystyle
&=\int\frac{9\sin^2{u}}{\sqrt{9-9\sin^2{u}}} \,
3\cos{u} du \\
&=9\int\frac{\sin^2{u}}{3\sqrt{1-\sin^2{u}}}
\, 3\cos{u} du
=9\int\sin^2{u} \, du\\
% &=9\int\frac{1 - cos^2{u}}{cos{u}} \, du
% = 9\left[\int\frac{1}{cos{u}}\, du - \int\frac{cos^2u}{cos u}\right]\\
\end{align*}ok how is this going to become what we see in the table equation ?
 
Physics news on Phys.org
  • #2
karush said:
$\textsf{Evaluate the integral}$
$$I=\displaystyle\int\frac{x^2}{\sqrt{9-x^2}}$$
$\textit{from the common Integrals Table we have}$
$$\displaystyle I=\int\frac{u^2}{\sqrt{u^2-a^2}} \, du
=\frac{u}{2}\sqrt{u^2-a^2}+\frac{a^2}{2}
\ln\left|u+\sqrt{u^2-a^2}\right|+C$$
$\textit{Thus if $u=x$ and $a=3$ we have}$
$$I_{44}=\int\frac{x^2}{\sqrt{x^2-3^2}} \, dx
=\frac{x}{2}\sqrt{x^2-3^2}+\frac{3^2}{2}
\ln\left|x+\sqrt{x^2-3^2}\right|+C$$
$\textit{or simplified}$
$$I_{44}=\int\frac{9}{\sqrt{x^2-9}} \, dx
=\frac{x}{2}\sqrt{x^2-9}+\frac{9}{2}
\ln\left|x+\sqrt{x^2-9}\right|+C$$

$\textit{so by using trig substitution to derive this we have}\\$
$\textit{$x=3\sin{u}\quad dx=3\cos{u} \, du $}$
\begin{align*}\displaystyle
&=\int\frac{9\sin^2{u}}{\sqrt{9-9\sin^2{u}}} \,
3\cos{u} du \\
&=9\int\frac{\sin^2{u}}{3\sqrt{1-\sin^2{u}}}
\, 3\cos{u} du
=9\int\sin^2{u} \, du\\
% &=9\int\frac{1 - cos^2{u}}{cos{u}} \, du
% = 9\left[\int\frac{1}{cos{u}}\, du - \int\frac{cos^2u}{cos u}\right]\\
\end{align*}ok how is this going to become what we see in the table equation ?

I don't think it will, but it might become$$
-\frac x 2\sqrt{9-x^2}+\frac 9 2 \arcsin\left( \frac x 3 \right )+C$$which I believe is the correct answer.
 

FAQ: 7.3.5 Integral with trig substitution

What is a trig substitution?

A trig substitution is a technique used in integrals to simplify the integration process. It involves substituting a trigonometric function for a variable in the integrand.

Why is trig substitution used in integrals?

Trig substitution is used in integrals because it can help to simplify complex integrals with trigonometric expressions. It can also help to solve integrals that cannot be solved through other methods.

What are the common trig substitutions used in integrals?

The most common trig substitutions used in integrals are:
- Substituting sinθ for √(a²-x²)
- Substituting cosθ for √(a²+x²)
- Substituting tanθ for x

How do you determine which trig substitution to use in an integral?

The choice of trig substitution depends on the form of the integral. It is important to look for trigonometric expressions in the integrand and choose a substitution that can simplify them. It is also helpful to use trig identities to manipulate the integral before choosing a substitution.

What are the steps to solve an integral using trig substitution?

The general steps to solve an integral using trig substitution are:
1. Identify the trigonometric expression in the integrand.
2. Choose an appropriate substitution based on the form of the expression.
3. Substitute the trigonometric expression for a variable in the integral.
4. Use trig identities to simplify the integral.
5. Solve the resulting integral.

Similar threads

Replies
8
Views
701
Replies
6
Views
2K
Replies
6
Views
708
Replies
1
Views
1K
Replies
3
Views
1K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top