MHB -7.64 Determine the following standard normal (z) curve areas:

AI Thread Summary
The discussion focuses on calculating the area under the standard normal (z) curve to the left of z = 1.75, which is approximately 0.959941 based on the provided z-table value. A user mentions difficulty rendering a TikZ diagram from Stack Exchange in their current environment, despite it working in Overleaf. The conversation emphasizes the importance of understanding z-scores and their corresponding areas in statistical analysis. The need for accurate graphical representation in statistical discussions is also highlighted. Overall, the thread illustrates the intersection of statistical calculations and technical challenges in visualizing data.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Determine the following standard normal (z) curve areas:

Determine the following standard normal (z) curve areas:

a. The area under the z curve to the left of $1.75$
from table $5\ \textit{$z^{*}$} =1.7 \textit{ col } .05 = .9599$
$\textit{ \textbf{$W\vert A$} input } (z\le 1.75)\approx 0.959941$

ok I found this tikz from stack exchange but I can't get it to render here

\begin{tikzpicture}[>={Stealth[length=6pt]},
declare function={g(\x)=2*exp(-\x*\x/3);
xmax=3.5;xmin=-3.4;x0=1.5;ymax=2.75;}]
\draw[gray!50] (-3.7,0) edge[->] (4,0) foreach \X in {-3.5,-3,...,3}
{(\X,0) -- ++ (0,0.1)} (0,0) edge[->] (0,ymax);
\fill[gray!60] plot[domain=x0:xmax,samples=15,smooth] (\x,{g(\x)}) -- (xmax,0) -| cycle;
\draw[thick] plot[domain=xmin:xmax,samples=51,smooth] (\x,{g(\x)});
\path (4,0) node[below]{$x$} (x0,0) node[below]{3};
{$Z_{\mathrlap{1-\alpha}}$}
(0,ymax) node{$f(x)$};\
end{tikzpicture}
however it rendered in overleaf...
 
Last edited:
Mathematics news on Phys.org
[/S
\documentclass{article}
\usepackage{pgfplots}
\begin{document}

\newcommand\gauss[2]{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))} % Gauss function, parameters mu and sigma

\begin{tikzpicture}
\begin{axis}[every axis plot post/.append style={
mark=none,domain=-2:3,samples=50,smooth}, % All plots: from -2:2, 50 samples, smooth, no marks
axis x line*=bottom, % no box around the plot, only x and y axis
axis y line*=left, % the * suppresses the arrow tips
enlargelimits=upper] % extend the axes a bit to the right and top
\addplot {\gauss{0}{0.5}};
\addplot {\gauss{1}{0.75}};
\end{axis}
\end{tikzpicture}
\end{document}
POILER]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top