- #1
Trista
- 33
- 0
This 5.0 kg block is pushed 3.0 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of theta = 30 degrees with the horizontal. mu kenetic = .30 between wall and block. I need to a). determine the work done by F, b) the force of gravity and c) the normal force between block and wall, and d) by how much does the gravitational potential energy increase during the blocks motion?
I think I figured out the triangle as follows: x element is 2.28, y element (of course) is 3.0 m , and r = 4.56. I'm not even sure if those are correct. In any case, the normal force would be zero because its vertical, right? So, the force of mass X gravity is one force, plus the force applied, and the friction must be taken into account.
Don't I need to solve for the F first, before finding work? I wish this were easier for me! I have more homework than this, and its taking all day!
Thank you for your help!
I think I figured out the triangle as follows: x element is 2.28, y element (of course) is 3.0 m , and r = 4.56. I'm not even sure if those are correct. In any case, the normal force would be zero because its vertical, right? So, the force of mass X gravity is one force, plus the force applied, and the friction must be taken into account.
Don't I need to solve for the F first, before finding work? I wish this were easier for me! I have more homework than this, and its taking all day!
Thank you for your help!