- #1
Kmabd2
- 4
- 1
And it seems like it's so straightforward for everyone else, which is incredibly frustrating. It's about the relationship between pressure and flow rate of a fluid moving in a pipe or closed system.
Often what I've heard is, they have an inverse relationship...but then there are cases where they're directly proportional...I think the problem may be that I'm conflating different types of pressures...maybe the best way to ask it is this...when we speak about discharge pressure of a pump for example...what does that physically mean?
For example, a C-Pump with an open impeller will produce fluid with high flow rate and low discharge pressure...ok, I get that it's low pressure in the sense that, there is less resistance to flow, i.e less pressure which then leads to high flow rate...but at the same time, a fluid moving faster, exerts more pressure across a fixed cross-sectional area than a fluid moving slower correct? So, which kind of pressure is the one usually referred to when speaking about "the pressure of the fluid" and why is that particular pressure significant?
Often what I've heard is, they have an inverse relationship...but then there are cases where they're directly proportional...I think the problem may be that I'm conflating different types of pressures...maybe the best way to ask it is this...when we speak about discharge pressure of a pump for example...what does that physically mean?
For example, a C-Pump with an open impeller will produce fluid with high flow rate and low discharge pressure...ok, I get that it's low pressure in the sense that, there is less resistance to flow, i.e less pressure which then leads to high flow rate...but at the same time, a fluid moving faster, exerts more pressure across a fixed cross-sectional area than a fluid moving slower correct? So, which kind of pressure is the one usually referred to when speaking about "the pressure of the fluid" and why is that particular pressure significant?