- #1
psie
- 267
- 32
- Homework Statement
- A stick lies on the interval ##[0,1]##, and is broken at the point ##X\in U(0,1)##. The left part is then broken again at the point ##Y\in U(0,X)##, i.e the conditional pdf of ##Y## given ##X## is ##f_{Y|X=x}(y)= \mathbf{1}_{(0,x)}(y)\frac1x##, ##0<y<x##, ##0<x<1##. Find the unconditional distribution of ##Y##.
- Relevant Equations
- We have ##f_{Y|X=x}(y)=\frac{f_{X,Y}(x,y)}{f_X(x)}##. Since ##X## is uniformly distributed on ##(0,1)##, ##f_X(x)=1## and thus ##f_{Y|X=x}(y)=f_{X,Y}(x,y)##.
So I'd like to "integrate out" the ##x##-variable, like $$f_Y(y)=\int_0^1 \mathbf{1}_{(0,x)}(y)\frac1x\,dx.$$ I am a bit hesitant on how to proceed, since I feel like I will get an unbounded density. Something's fishy, but I don't know what.
Last edited: