- #1
DreamWeaver
- 303
- 0
Define the second order Clausen function by:\(\displaystyle \text{Cl}_2(\varphi) = -\int_0^{\varphi} \log\Bigg| 2\sin \frac{x}{2} \Bigg|\, dx = \sum_{k=1}^{\infty}\frac{\sin k\varphi}{k^2}\)Prove the triplication formula:\(\displaystyle \text{Cl}_2(3\varphi) = 3\text{Cl}_2(\varphi) + 3\text{Cl}_2\left(\varphi+ \frac{2\pi}{3} \right) + 3\text{Cl}_2\left(\varphi+ \frac{4\pi}{3} \right)\)Hint:
Consider the triplication formula for the Sine:
\(\displaystyle \sin 3x = 3\sin x-4\sin^3 x\)
\(\displaystyle \sin 3x = 3\sin x-4\sin^3 x\)