MHB A complex numbers' modulus identity.

AI Thread Summary
The discussion focuses on proving the identity involving the modulus of complex numbers, specifically that |z_1| + |z_2| equals the sum of two expressions involving the average of z_1 and z_2 and the square root of their product. The approach suggested involves squaring both sides of the identity to simplify the proof, leveraging the non-negativity of the terms. A connection to the algebraic identity a^2 + 2ab + b^2 is noted, where a and b are the square roots of z_1 and z_2, respectively. The discussion highlights the potential complexity of the proof and seeks a more efficient method to demonstrate the identity. Ultimately, the conversation emphasizes the need for a clever shortcut in the proof process.
Alone
Messages
57
Reaction score
0
I am searching for a shortcut in the calculation of a proof.

The question is as follows:

2.12 Prove that:

$$|z_1|+|z_2| = |\frac{z_1+z_2}{2}-u|+|\frac{z_1+z_2}{2}+u|$$

where $z_1,z_2$ are two complex numbers and $u=\sqrt{z_1z_2}$.

I thought of showing that the squares of both sides of the above identity are equal, in which case since both sides of the above identity are nonnegative we will get the above identity.

The problem that it seems too tedious work, unless there's some trick to be used here?
 
Mathematics news on Phys.org
You have [math]\left|\frac{z_1+ z_2}{2}- \sqrt{z_1z_2}\right|= \left|\frac{z_1- 2\sqrt{z_1z_2}+ z_2}{2}\right|[/math].

Noting the resemblance to [math]a^2+ 2ab+ b^2[/math] I would let [math]a= \sqrt{z_1}[/math] and [math]b= \sqrt{z_2}[/math]. Then [math]\left|\frac{z_1- 2\sqrt{z_1z_2}+ z_2}{2}\right|= \frac{(a- b)^2}{2}[/math]. Do the same thing for [math]\left|\frac{z_1+ z_2}{2}+ \sqrt{z_1z_2}\right|= \left|\frac{z_1+ 2\sqrt{z_1z_2}+ z_2}{2}\right|[/math]
 
Last edited by a moderator:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top